

Status of KGWG-KAGRA DetChar Activities

John J. Oh (NIMS & KGWG) On behalf of KGWG-Detchar Working Group

2018. 5. 18 - 20 KAGRA F2F Meeting @ Osaka City University

Contents

- Members
- Status Report I KAGRA Site Work
- Status Report II Channel Safety Study
- Status Report III CAGMon (Detchar Tool)
- Future Work

Members

John J. OH (NIMS) DET / Deep Learning

IIMS) Edwin J. SON (NIMS) Learning DET / Deep Learning

Young-Min KIM (UNIST) DET / Deep Learning

Piljong Jung (GIST) (Temporary member) Channel Safety Study

Keun-Young Kim (GIST) (Supervisor) Channel Safety Study

Temporary Membership

Will be a regular member of KAGRA SOON!

NIMS (4), UNIST (1), GIST (2)

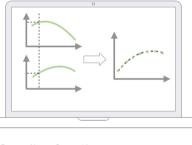
Sang Hoon OH (NIMS) \ DET / Deep Learning [

Whansun KIM (NIMS) DET / Deep Learning

3

Status Report I – Site Work @ KAGRA

Grad. Student Piljong Jung (GIST)


Long-term visit KAGRA during 2017. 12. 14 – 2018. 1. 31 as a temporary member of KAGRA (under special permission)

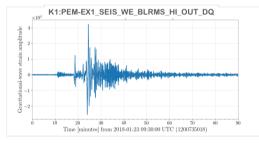
2

KAGRA

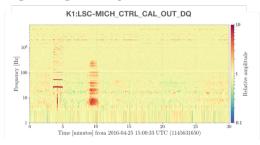
3

✤ ANALYSIS TOOL DEVELOPMENT

- Coupling function
- Realtime Cache generator in k1det1


BUILDING ENVIRONMENT

- Build the Python environment at seikai and k1det1
- LALQuite install in seikei and k
- LALSuite install in seikai and k1det1
- gwpy install in seikai and k1det1


✦ DETECTOR CHARACTERIZATION

· Check for the impact of an

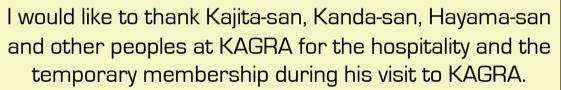
earthquake from Jakarta on KAGRA

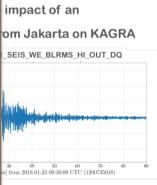
glitch signal analysis

Status Report I – Site Work @ KAGRA

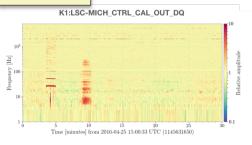
· Build the Python environment

LALSuite install in seikai and k1det1


gwpy install in seikai and k1det1


at seikai and k1det1

Grad. Student Piljong Jung (GIST)


Long-term visit KAGRA during 2017. 12. 14 – 2018. 1. 31 as a temporary member of KAGRA (under special permission)

RACTERIZATION

nalysis

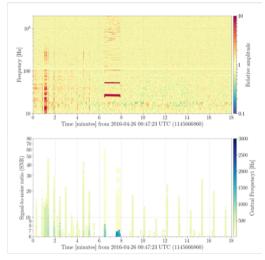
Purpose of Channel Safety Study

Detector characterization:

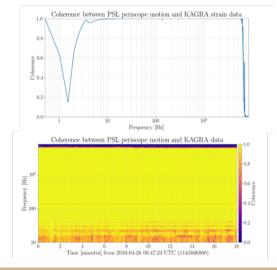
- monitor and understand the glitches from environmental disturbances and instrumental anomalies that is very harmful to gravitational-wave detection (e.g. wind, earthquake, lightscattering, thermal vibration etc)

- reduce the rate of such glitches by using various veto methods and detchar tools (enhancing DQ)

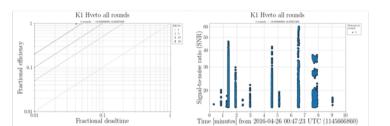
If there are some subsystem channels that behave identically with the gravitational wave channel (we said 'the channel is unsafe'), then all gravitational-wave signals will be removed by glitch veto algorithm. So we must remove those channels from the glitch vetoing channel list (so called 'Detchar Channel List or Safe Channel List').

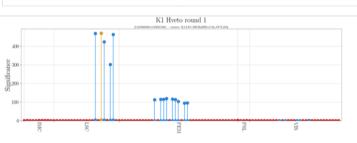

Channel Safety Study should be done before the signal search and glitch veto analysis. The study is about 'making a decision which channels behave like gravitational-wave channel and generating a safe channel list for detchar purpose'.

For example: GW150914 (at the very early stage of detection)


- Veto algorithm (Hveto used in LSC) rejected the signal since some unsafe channels are not properly removed from the Detchar Channel List. This fault has been modified soon, then the detection has been made correctly.

Status Report II – Channel Safety Study (1/2)


DATA PROPERTIES



COHERENCE K1:LSC-MICH_OUT_DQ

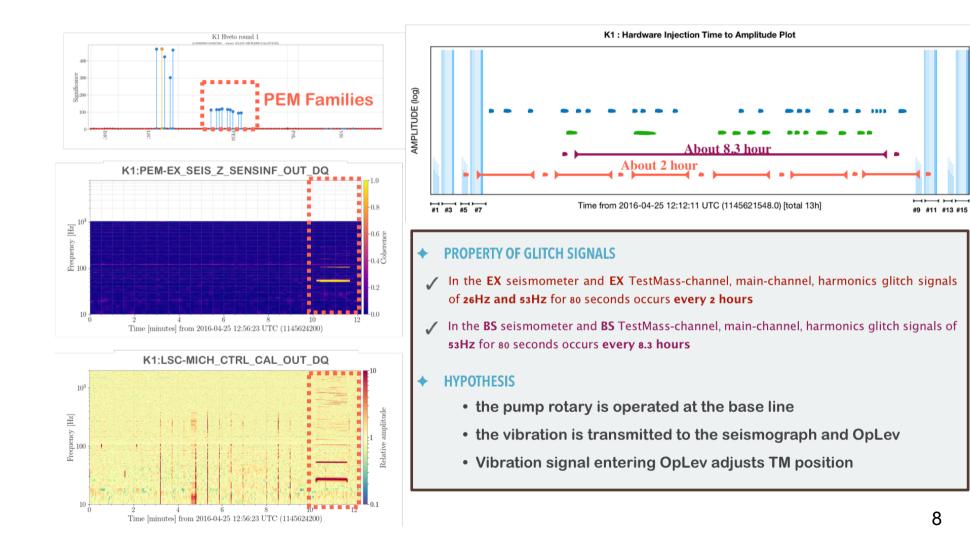
HVETO RESULT

Families

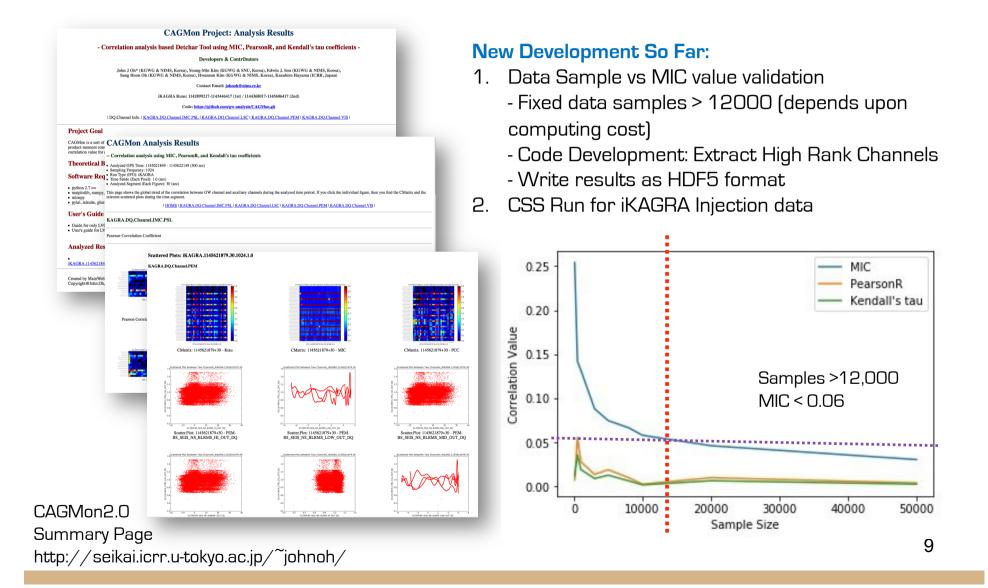
K1:LSC-MICH_OUT_DQ K1:LSC-REFL_PDA1_RF17_I_OUT_DQ K1:LSC-REFL_PDA1_RF17_Q_OUT_DQ K1:LSC-MICH_ERR_CAL_OUT_DQ K1:LSC-MICH_BLND_CAL_OUT_DQ

K1:PEM-EX_SEIS_NS_BLRMS_HI_OUT_DQ K1:PEM-EX_SEIS_NS_BLRMS_MID_OUT_DQ K1:PEM-EX_SEIS_NS_SENSINF_OUT_DQ K1:PEM-EX_SEIS_WE_BLRMS_HI_OUT_DQ K1:PEM-EX_SEIS_WE_BLRMS_MID_OUT_DQ K1:PEM-EX_SEIS_Z_BLRMS_HI_OUT_DQ K1:PEM-EX_SEIS_Z_BLRMS_MID_OUT_DQ K1:PEM-EX_SEIS_Z_SENSINF_OUT_DQ

♦ UNSAFE CHANNEL LIST in iKAGRA


K1:LSC-MICH_OUT_DQ K1:LSC-REFL_PDA1_RF17_Q_OUT_DQ K1:LSC-MICH_ERR_CAL_OUT_DQ K1:LSC-MICH_BLND_CAL_OUT_DQ K1:LSC-REFL_PDA1_RF17_I_OUT_DQ

7


Status Report II – Channel Safety Study (2/2)

STRANGE PHENOMENON

IDENTIFY GLITCH SIGNAL

Status Report III – CAGMon

Status Report III – CAGMon

Injection Test 1: SG injection: 1145621548_3.0_40	096	Maximal information coefficient:	Short-period Propagating channels
Kendall's tau coefficient:		LSC-ACT_DEMOD1_I_OUT_DQ	1.000
		LSC-ACT_DEMOD1_Q_OUT_DQ	1.000
LSC-MICH_BLND_CAL_OUT_DQ LSC-MICH_ERR_CAL_OUT_DQ	0.993 0.992	LSC-ACT_DEMOD2_Q_OUT_DQ	1.000
		LSC-ACT_DEMOD3_I_OUT_DQ LSC-ACT DEMOD3 Q OUT DQ	1.000 1.000
		LSC-ACT_DEIVIOD3_Q_OUT_DQ LSC-CAL_A1_REAL_OUT_DQ	0.931
		LSC-CAL_AT_NLAL_OUT_DQ	0.999
Pearson's correlation coefficient:		LSC-CAL A2 REAL OUT DQ	1.000
		LSC-CAL B1 REAL OUT DQ	0.952
LSC-MICH_BLND_CAL_OUT_DQ	0.999	LSC-CAL B2 IMAG OUT DQ	1.000
LSC-MICH_ERR_CAL_OUT_DQ	0.999	LSC-CAL_B2_REAL_OUT_DQ	1.000
		LSC-MICH_BLND_CAL_OUT_DQ	1.000
		LSC-MICH_ERR_CAL_OUT_DQ	1.000
		LSC-UGF_SERVO_OUT_DQ	0.913
		PEM-BS_SEIS_WE_BLRMS_LOW_OUT_DQO	.984
		PEM-EX_SEIS_NS_BLRMS_LOW_OUT_DQ	1.000
		PEM-EX_SEIS_WE_BLRMS_LOW_OUT_DQ	1.000
		PEM-EY_SEIS_NS_BLRMS_LOW_OUT_DQ	1.000
		PEM-EY_SEIS_WE_BLRMS_LOW_OUT_DQ	1.000
		PEM-EY_SEIS_Z_BLRMS_LOW_OUT_DQ	1.000

VIS-PR3_GAS_DAMP_BF_OUT_DQ

0.999

Status Report III – CAGMon

Injection Test 2: CBC injection: 1145622508_13	8.0_1024	Injection Test 3: BNS injection: 1145623468_64.0_256		
Kendall's tau coefficient:		Kendall's tau coefficient:		
LSC-MICH_BLND_CAL_OUT_DQ LSC-MICH_ERR_CAL_OUT_DQ	0.998 0.942	LSC-MICH_BLND_CAL_OUT_DQ LSC-MICH_ERR_CAL_OUT_DQ	0.99 0.68	
Pearson's correlation coefficient	:	Pearson's correlation coefficient:		
LSC-MICH_BLND_CAL_OUT_DQ LSC-MICH_ERR_CAL_OUT_DQ	0.999 0.996	LSC-MICH_BLND_CAL_OUT_DQ LSC-MICH_ERR_CAL_OUT_DQ	0.99 0.88	
Maximal information coefficient:		Maximal information coefficient:		
LSC-MICH_BLND_CAL_OUT_DQ LSC-MICH_ERR_CAL_OUT_DQ	1.000 0.962	LSC-MICH_BLND_CAL_OUT_DQ	1.00	

PEM-EY SEIS NS BLRMS LOW OUT DQ 0.945

VIS-PR3 GAS DAMP BF OUT DQ

LSC-MICH_BLND_CAL_OUT_DQ	1.000
LSC-MICH_ERR_CAL_OUT_DQ	0.590

1. Ktau, PCC, MIC can find identical channels to GW channel that are obviously unsafe for *longer duration data of injections*

0.999

2. More injection studies needed to find their families, comparing to the H-veto result.

Future Work

Channel Safety Study: H-veto based study has been done so far

- Documentation for general users
- Rerun for all detchar channel list
- Making unsafe channel list for detchar works
- Interface (web-based) for daily detchar study

CAGMon Detchar Tool:

- Channel Safety Run Comparing to H-veto Results
- Improving Parallelized MIC algorithm (for Speed-up)
- Interfacing an Interactive Detchar Tool

Visit to KAMIOKA Site:

- Developing and installing Detchar tools
- Analyzing bKAGRA data (Hveto, CSS, CAGMon etc)
- Newtonian noise measurement