Optical performances and thermal noise measurements of crystalline coatings

<u>Manuel Marchiò</u>, Raffaele Flaminio, Laurent Pinard, Daniéle Forest, Christoph Deutsch, Paula Heu, David Follman, Garrett Cole, Slawek Gras, Matt Evans

GWADW 2018, May 15th, Girdwood, Alaska

Motivation

- The limiting noises at mid frequencies are mirror thermal noise and quantum noise.
- To reduce thermal noise KAGRA cools down the test masses.
- New crystalline coatings are proposed as upgrade.
- CMS is able to fabricate large area crystalline coatings.
- Optical characterization is needed.

Crystalline AlGaAs samples

zinc blende structure

35.5 doublets of GaAs / Al_{0.92}Ga_{0.08}As

2 inches diameter

- Grown with Molecular Beam Epitaxy (MBE) on a GaAs substrate
- Then transferred onto the final substrate
- Two samples, SILICA and SAPPHIRE substrates. 2 inches x 0.5mm

Optical characterization

- Defects
- Transmission
- Scattering
- Roughness
- Absorption
- Thermal noise @ MIT

Research Article
Optics EXPRESS

Optical performance of large-area crystalline coatings

MANUEL MARCHIÒ,^{1,2,*} RAFFAELE FLAMINIO,^{1,2,6} LAURENT PINARD,³ DANIÉLE FOREST,³ CHRISTOPH DEUTSCH,⁴ PAULA HEU,⁵ DAVID FOLLMAN,⁵ AND GARRETT D. COLE^{4,5}

Vol. 26, No. 5 | 5 Mar 2018 | OPTICS EXPRESS 6114

¹Department of Astronomy, The University of Tokyo, Tokyo 113-8654, Japan
 ²National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
 ³Laboratoire des Matériaux Avancés—CNRS/IN2P3, F-69622 Villeurbanne, France
 ⁴Crystalline Mirror Solutions GmbH, 1010 Vienna, Austria
 ⁵Crystalline Mirror Solutions LLC, Santa Barbara, CA 93101, USA
 ⁶now at: Laboratoire d'Annecy de Physique des Particules, 74940 Annecy-le-Vieux, France
 *manuel.marchio@nao.ac.jp

Defects

On sapphire substrate

	Defect	Size (µm)
G	A	216
	В	690
	С	1304
	D	957
	E	1462
	F	941
	G	171
	н	875
	I	250

On fused silica substrate

Defect #	Size (µm)	Defect #	Size (µm)
1	200	10	63
2	85	11	55
3	62	12	121
4	186	13	185
5	65	14	98
6	60	15	117
7	75	16	76 &68
8	75	17	52
9	52	18	271
		19	51

Small defects < 5 um. Micromap

Defects rate: 0.85/mm²

(LIGO/Virgo: 0.7/mm²)

- Spectrophotometer measurement

- Fit with model

- Transmission measurement @1064

Measurement consistent with the design and the fit

Scattering

- Map of BRDF at fixed angles ([0°,4°],[0°,14°])

- Then converted to Total Integrated Scattering

On sapphire substrate

Laboratoire des Matériaux Avancés - Villeurbanne - France 25 Ymm 17

On fused silica substrate

- Coating roughness is limited by the substrate roughness
- Coating doesn't follow silica substrate's roughness at high frequencies

Absorption

PHOTOTHERMAL DEFLECTION

- Single point measurement
- GaAs / $AI_{0.92}Ga_{0.08}As$ transferred on **silica** substrate: < **0.8 ppm**
- **Sapphire** has higher thermal diffusivity, so the signal is too small (below the noise level)
- Low SNR \rightarrow need more pump power.

Summary of published results

Measurement	Coating on silica substrate	Coating on sapphire substrate
Transmission @1064nm	6 ppm	6 ppm
Absorption @1064 nm	$\leq 0.8 \text{ ppm}$	below the noise floor
Scattering @1064nm	9.5 ppm	6 ppm
Coating Roughness	7.7 Å RMS	1.1 Å RMS
Substrate Roughness	9.1 Å RMS	1.1 Å RMS

Absorption map planned @NAOJ

PHOTOTHERMAL COMMONPATH INTERFEROMETER

11

- Measure crystalline coatings soon...
- Expected sensitivity better that 0.1ppm

Thermal noise @MIT

- TEM00 + TEM20 + TEM02 coresonate in the folded cavity

- TEM00 is used to lock the cavity and suppress common noises.

- TEM02/20 are spatially separated, so they sense uncorrelated noise.

- TEM02/20 have different resonance frequency.
- The **beatnote** between TEM02 and TEM20 contains the thermal noise information.

Sample in the

peek holder

- Sapphire and silica samples give different noise.
- Sapphire has higher Young modulus (Thermo-Elastic noise), but is designed for cryogenic operation.

- Data analysis is ongoing to estimate Thermo-Refractive and Thermo-Elastic noise contributions and fit the measurement.