Sensitivity Optimization of Cryogenic Gravitational Wave Detectors

Yuta Michimura

Department of Physics, University of Tokyo

Kentaro Komori, Atsushi Nishizawa, Hiroki Takeda, Koji Nagano, Yutaro Enomoto, Kazuhiro Hayama, Kentaro Somiya, Masaki Ando

Overview

- Cryogenic GW detectors require careful design
 - tradeoff between laser power and temperature
 - simultaneous tuning of multiple parameters
- Particle swarm optimization
 - simple algorithm, few design variables
 - fast
- Applied for KAGRA sensitivity design
 - re-tuned 7 parameters
 - inspiral range optimization
 - sky localization optimization

Room Temperature Design

- Seismic noise: reduce! multi-stage suspensions underground
- Thermal noise: reduce!
 larger mirror
 thinner and longer wires

 Quantum noise: optimize the shape input laser power tune signal recycling parameters

Cryogenic Design is Complicated

- Seismic noise: reduce! multi-stage suspensions underground
- Thermal noise: reduce!
 larger mirror
 thinner and longer wires

cryogenic cooling

 Quantum noise: optimize the shape input laser power tune signal recycling parameters

Cryogenic Design is Complicated

- Seismic noise: reduce! multi-stage suspensions underground
- Thermal noise: recelered environed environed environed environed environed environed environment environment

heat extraction

cryogenic cooling

 Quantum noise: optimize the shape input laser power tune signal recycling parameters

Ancient Method is not Scalable

- Sensitivity design is an optimization problem
- Grid-based parameter search
 - deterministic
 - computational cost grows exponentially with number of parameters
- Future GW detectors

 (with crazy quantum ideas)
 require more parameters
 to be optimized
- Almost impossible with grid-based approach

Particle Swarm Optimization!

 Particles search the parameter space based on own best position and entire swarm's best known position

Parameter space

Kennedy & Eberhart (1995)

PSO for GW Related Research

CBC search

Weerathunga & Mohanty, <u>PRD 95, 124030 (2017)</u> Wang & Mohanty, <u>PRD 81, 063002 (2010)</u> Bouffanais & Porter, <u>PRD 93, 064020 (2016)</u>

- Continuous GW search using pulsar timing array Wang, Mohanty & Jenet, <u>ApJ 795, 96 (2014)</u>
- Cosmological parameter estimation using CMB Prasad & Souradeep, <u>PRD 85, 123008 (2012)</u>
- Gravitational lens modeling Rogers & Fiege, <u>ApJ 727, 80 (2011)</u>
- Sensor correction filter design Conor Mow-Lowry, <u>LIGO-G1700841</u> <u>LIGO-T1700541</u>

Pros and Cons of PSO

Fast even for highly multidimensional parameter space

uses entire swarm's information to search

- Requires small number of design variables and little prior information basically only swarm size and termination criterion prior information is only search range
- No guarantee for convergence to global maximum stochastic method
- Do not give error of the parameters no direct information on stability of the solution
- \rightarrow Sounds great for detector design

KAGRA

- RSE interferometer
- Cryogenic sapphire test masses

KAGRA Parameters to Optimize 7 parameters relatively easy to be retuned Search range based on feasibility. input power fiber to BS length and diameter Laser SRC mirror detuning angle **SRM** temperature reflectivity homodyne angle

PSO Algorithm Initialize particle positions randomly Calculate KAGRA sensitivity strain quantum Calculate cost function seismic thermal Change smaller than threshold? frequency YES 13 Terminate

PSO Algorithm

PSO Algorithm

Consistent with current designed sensitivity
 optimized with grid-based approach

Consistent with current designed sensitivity
 optimized with grid-based approach

 Changing suspension fibers and SRM increases BNS IR from 153 Mpc to 169 Mpc (10% increase)

 Changing suspension fibers and SRM increases BNS IR from 153 Mpc to 169 Mpc (10% increase)

Computational Cost

- Optimization done in O(100) sec with this laptop
- Number of cost function evaluations

	Grid-based	PSO
3 params	10 ⁵ 🗆	10×(52±13) □
5 params	10 ⁹ 🗆	20×(73±16) □
7 params	10 ¹⁴ 🗆	200×(60±18) □

* In case optimization is done within 0.1 Mpc

- Computational cost do not grow exponentially with dimensionality
- Useful for optimization with many parameters, computationally expensive cost function

Sky Localization Optimization

Cost function:

sky localization of GW170817-like binary

- 1.25-1.5 Msun at 40 Mpc, inclination 28 deg

aLIG(

- no spins
- 108 sets of sky location and polarization angle to derive median of sky localization error AdV

KAGRA

PSO

10¹

 10^{0}

sky localization error [deg

- Fisher matrix to estimate the error
 - inspiral waveform to 3.5 PN
 - 11 binary parameters
- HLVK global network

• Sky localization improved by a factor of 1.3 but inspiral range is reduced by 20%

• Sky localization improved by a factor of 1.6 but inspiral range is reduced by 2%

Summary of Strategy Difference

- Inspiral range optimization
 - high detuning, high SRM reflectivity
 - shorter and thicker fiber
 - lower temperature to keep mirror thermal low
- Sky localization optimization
 - no detuning, conventional readout
 - shorter and thicker fiber
 - higher temperature to put more laser power

Future Prospects

Optimize intermediate mass parameters

Lase

H. Miao+, arXiv:1712.07345

27

 Incorporate squeezing and more complicated quantum techniques

- Incorporate detection rate into cost function
- Optimization for
 - NS EoS
 - BH ringdown etc...

Summary

- Demonstrated sensitivity design with PSO
- Application to KAGRA shows
 - BNS inspiral range can be increased by 10 %
 - BNS sky localization can be improved by 1.6 by retuning 7 parameters of existing components
- Showed that PSO is useful for future GW detectors
 - low computational cost
 - little prior information necessary
 - allows more sophisticated cost function
- Yuta Michimura et al. arXiv:1804.09894

Supplementary Slides