KAGRA 腕共振器鏡のための 13.5 m 防振懸架系の開発

登壇者: 奥富 弘基 (総研大 D3)

KAGRAコラボレーション

高橋竜太郎、佐藤直久、石崎秀晴、宮本昂拓、牛場崇文、 三代浩世希、山本尚弘、和泉究、宮川治、上泉眞裕、 戸村友宣、木村誠宏、井上優貴、正田亜八香、 阿久津智忠、麻生洋一、R. DeSalvo

目次

1. KAGRA~防振懸架系とは?

 2. 腕共振器鏡用 防振懸架系: Type-A suspension

3. Type-A tower 制御試験について

防振懸架系とは?

鏡を振り子のように吊る装置

なぜ鏡を懸架するのか?

重力波に対する
 自由落下応答

2. 地面振動からの防振

3. 干渉計の制御性能

なぜ鏡を懸架するのか?

KAGRA の 雑音 源

地面振動雑音を減らすには?

①地下は静か

②振り子による受動防振

地面から鏡へ伝わる振動 ∝ f_0^2/f^2

振り子の周波数応答

振り子の周波数応答

共振を抑制するには…

ダンピング制御

フィードバックされる力 ∝ マスの変位

防振懸架系の役割

重力波に対する 自由落下応答

2. 地面振動からの防振

3. 干渉計の制御性能

腕共振器鏡用防振懸架系: Type-A

KAGRAの防振懸架系

Type-A Suspension

インストール

インストール

1. KAGRA~防振懸架系とは?

2. 腕共振器鏡用 防振懸架系: Type-A suspension

3. Type-A tower 制御試験について

防振懸架系の性能評価

機械的パラメータの同定

- 固有振動モード
 周波数
- 振動のQ値

- 伝達関数の測定
- 3D剛体モデルシミュ
 レーションとの比較

モデルとの比較

モデルとの比較

ダンピング制御 - 開ループ伝達関数

GAS (垂直方向)の制御

制御系を組みにくい

周波数 [Hz]

周波数 [Hz]

GASの振動モード

モード分解

 ● : 固有モード行列(モード座標系→物理座標系への変換行列)

 3D剛体モデルの次元を削減して求める

 M: センサ基底から各段の物理座標系への変換行列

モード基底

▶ 3D剛体モデルで同定できているモード周波数

センサ・アクチュエータ対角化

モード座標系での力変位伝達関数

モード座標系での力変位伝達関数

GASモーダルスペクトル (制御OFF)

GASモーダルダンピングの結果

モーダルダンピングの考察

- 高周波の複雑な応答を無視してダンピング制御可能
 > より容易な制御系設計が可能
- ▲ GAS全段にFB ▶ 観測帯域(>10 Hz)で制御雑音を導入
 ▶ ダンピング時のみ使用、観測状態のときには使わない

今後の展望

- 低温ペイロードと接続、全体の性能評価
- 現代制御システムの実装
 - 最適レギュレータによる状態推定フィードバック

Why Are Mirrors Suspended?

1. Geodesic (free-falling) response to GW 2. Vibration isolation 3. Interferometer control

Michelson Interferometer

Mirror Alignment

Mirror Alignment

