Laser Interferometry for Gravitational Wave Astronomy

Yuta Michimura

Department of Physics, University of Tokyo

Nobel Prize in Physics 2017

 for decisive contributions to the LIGO detector and the observation of gravitational waves

2017 Nobel Prize in Physics

https://www.ligo.caltech.edu/

GWs Announced So Far

- Binary black holes

 GW150914 (first event)
 LVT151012 (candidate)
 GW151226
 GW170104
 GW170814
- Binary neutron stars GW170817 (GW and light)
- Dawn of gravitational wave astronomy

Contents

- Introduction to gravitational waves characteristics, sources, detection
- First detections by LIGO and Virgo binary black holes binary neutron stars solved mysteries and new mysteries global network of GW observation
- KAGRA at Kamioka, Gifu, Japan underground construction cryogenic operation
- Future of gravitational wave astronomy longer baseline space borne observatory

Gravity in General Relativity

- space-time bends with presence of mass
- bending affects motion of objects \rightarrow gravity

Gravitational Waves

• ripples in space-time created by motion of objects

Characteristics of GWs

- propagates at the speed of light
- quadrupole radiation (+ mode and x mode)
- high transmissivity ↔ very weak interaction

- large mass and large acceleration creates large GW
- amplitude of GW fraction of $h = \frac{\delta L}{L}$ length change

Sources of GWs

Binary black holes

Binary neutron stars

Pulsars

Supernovae

What's So Great About GWs

- Investigate inside the stars high transmissivity of GW equation of state of neutron stars
- Observe stellar objects cannot be seen with electromagnetic waves black holes, dark matter, unknown unknowns?

Detection of GWs

- Most common detector: laser interferometer
- Rai Weiss (MIT) proposed in 1960s

Laser Interferometric GW Detector

measure differential arm length change

Laser Interferometric GW Detector

measure differential arm length change

Amplitude of GWs

for example, h ~ 10⁻²¹

History of GW Detection

- 1916 Einstein predicted GW
- 1960s Weiss proposed interferometric detection
- 2000s Started first searches for GW LIGO (USA 4 km), TAMA300 (Japan 300m), GEO600 (Germany 600m), Virgo (Italy 3km) \rightarrow No detection
- 2011 LIGO started upgrade
- 2015 Advanced LIGO started operation
- 2016 First detection announced

David Reitze "We did it"

First Detection of GW by aLIGO

by two detectors 3030 km away, at almost the same time (7 msec)

Waveform of GW

- can be calculated using numerical relativity
- perfectly matched with calculation
- test of general relativity in strong-field regime

Simulation of Binary BH merger

• two inspiring BHs \rightarrow single BH

https://youtu.be/c-2XIuNFgD0

Information from GW

- mass from pitch (frequency)
- distance from loudness

quiet when far

low-pitched for large drum

high-pitched for small drum

Information from GW

mass and distance of the source

Masses of Black Holes

much heavier than known stellar-mass BHs

http://www.virgo-gw.eu/docs/GW170814/

New Mystery: Origin of Heavy BHs

 supernovae and neutron star mergers only generate BHs smaller than ~10 solar mass

neutron stars

merger

black holes smaller than ~10 Msun

New Mystery: Origin of Heavy BHs

- many ideas
- more events with more precise parameter estimation necessary

Primordial BHs?

Globular clusters?

NASA/Dana Berry/SkyWorks Digital

First Detection of Binary NS

- Jointly by Advanced LIGO and Advanced Virgo
- Ionger, upto higher frequency
 <u>https://youtu.be/RyXD_cSIaPc</u>

Binary Neutron Stars

• $GW \rightarrow short gamma-ray burst \rightarrow kilonova$

https://youtu.be/e7LcmWiclOs

First Detection of Binary NS

- Jointly by Advanced LIGO and Advanced Virgo sky localization improved from 190 deg² to 30 deg² with Virgo
- Follow-up observations by many telescopes

Sky Localization

• done with timing difference

different location gives slightly different arrival time

Sky Localization

Sky Localization

Electromagnetic Follow-up

many telescopes pointed the GW170814

Electromagnetic Follow-up

- in the following hours, days and weeks
- at various wavelengths
- consistent with merger
 → short
 gamma-ray burst
 → kilonova

Light Curves by J-GEM

- Japanese collaboration of Gravitational wave Electro-Magnetic follow-up
- 可視光 16 近赤外線 Consistent light 17 curves with infra-red (with r-process) heavy element Magnitude 18 creation by 19 r-process Optical infra-red 20 (without r-process) 21 5 10 15 n https://www.subarutelescope.org/ Days from GW detection 31 Pressrelease/2017/10/16/j_index.html

Solved and Unsolved Mysteries

- Origin of short gamma-ray bursts
 - coincidence with NS merger, as expected
 - but too faint: why?
- Origin of heavy elements
 - consistent light curve with calculations
 - but do all heavy elements come from BNS mergers?
- Remnant of NS merger
 - BH or NS or ??
 - equation of state
- More event and more precise parameter estimation necessary

Global Network of GW Telescopes

 For more event, better localization Advanced LIGO and parameter estimation (preparing for O3)
 GEO-HF

Advanced Virgo (preparing for O3)

LIGO-India (approved)

KAGRA (construction)

Advanced LIGO

KAGRA Under Construction

- at underground site of Kamioka mine, Gifu, Japan
- 3-km cryogenic gravitational-wave telescope
- more than 60 institutes, more than 200 collaborators around the world

Location of KAGRA

2.5 hours from Tokyo by Hokuriku-Shinkansen

Kamioka

June 2015

Kamioka Underground Observatory

L-shaped tunnel in Mt. Ikenoyama

XMASS(dark matter) CLIO KamLAND(neutrino) (GW) X tunnel (3 km) Super Kamiokande

KAGRA

(neutrino)

Gooale 牧発電所

tunne

ALL AND

ffice

東茂住郵便局

©2016 Google、DigitalGlobe、Cnes/Spot Image、地図データ©2016 ZENRIN フィードバックの送信 利用規約 maps.google.co.jp

高幡山 丛

津島神社 🖬

大滝・

3D

KAGRA Tunnel

 two 3-km long vacuum pipes for laser beams to go back and forth

Working Style at Underground

- helmet, safety vest, boots, oximeter
- electric bicycle

Why Underground?

- vibration of mirror fakes GW signal
- seismic vibration is smaller at underground plot by A. Shoda, JGW-G1605219

Suspension for Vibration Isolation

 seismic vibration is attenuated by suspending a mirror seismic

Suspension for Vibration Isolation

 seismic vibration is attenuated by suspending a mirror

Vibration Isolation System

.....

7-stage pendulum over two stories

Vibration Isolation System

Cooling to Reduce Thermal Noise

- thermal vibration of mirror surface will be noise
- cryogenic cooling to 20 K to reduce thermal noise

Cryogenics

lowest vibration cryocoolers

cryocooler

Displacment meter for ch1

> Displacment meter for ch2 柏で実験中の冷凍機ユニッ¹⁶

Inside Cryostat

Sapphire Mirror

- artificial sapphire
- low mechanical loss at cryogenic temperatures
- high reflectivity
- low loss
- high quality polish

Future Prospects

 LIGO (USA) quantum optical technique (squeezing) cryogenic silicon mirror at 120 K → x3 sensitivity

EINSTEIN

ET

Next generation detectors

 Einstein Telescope (Europe)
 10 km cryogenic interferometer at underground
 Cosmic Explorer (USA)
 40 km interferometer, 123 K silicon

Space Borne GW Telescopes

no seismic vibration, very long arms
 → low frequencies: primordial GWs, massive BHs

Primordial GWs

 GW from early universe (inflation) look into the very beginning of the universe

DECIGO

- DECIGO band is suitable for primordial GW
- for better understanding of history of the universe

Summary

- Whole new frontier of astronomy opened
 - gravitational wave astronomy
 - multi-messenger astronomy
- A lot of mysteries to be solved
 - origin of heavy stellar-mass black holes
 - neutron star equation of state
 - short gamma-ray burst, kilonova,
- KAGRA under construction
 - unique techniques: underground and cryogenics

54

- observing runs in early 2020s
- Future prospects
 - longer arms, cryogenics, underground
 - space projects (LISA, DECIGO, ...)

Additional Slides

Comparison of GW Detectors

	KAGRA	AdVirgo	aLIGO	A+	Voyager
Arm length [km]	3	3	4	4	4
Mirror mass [kg]	23	42	40	80	200
Mirror material	Sapphire	Silica	Silica	Silica	Silicon
Mirror temp [K]	22	295	295	295	123
Sus fiber	35cm Sap.	70cm SiO ₂	60cm SiO ₂	60cm SiO ₂	60cm Si
Fiber type	Fiber	Fiber	Fiber	Fiber	Ribbon
Input power [W]	78	125	125	125	140
Arm power [kW]	340	700	710	1150	3000
Wavelength [nm]	1064	1064	1064	1064	2000
Beam size [cm]	3.5 / 3.5	4.9 / 5.8	5.5/6.2	5.5/6.2	5.8/6.2
SQZ factor	0	0	0	6	8
F. C. length [m]	none	none	none	16	300

LIGO parameters from LIGO-T1600119, AdVirgo parameters from JPCS 610, 01201 (2015)

Multi-Frequency GW Astronomy

