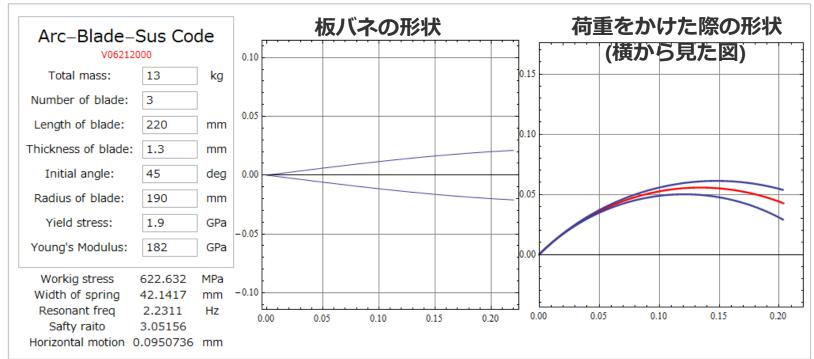
OMCS BLADE DESIGN

防振システム概要

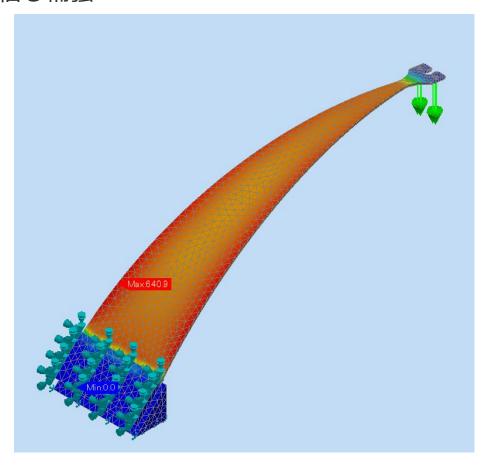
- 板バネにはマルエイジング鋼使用
- 特金から260x220 t1.3のMAS-1板を2枚購入→10枚作成
- 圧延方向は長手方向→長手方向を使用
- 固定部を考慮しバネ長220mm
- ブレッドボード11kg+光学素子その他2kg =13kg
- 目標安全率3
- 3本吊り
- 無荷重状態で直線板バネ (プレ-ベント無し)
- 防振比の要求値 20Hzで1/100の
- 縦横カップリング最小になるデザインを採用
- 解析計算で設計後, Nastranで有限要素法構造解析
- 加工後熱処理とニッケルメッキ

板バネの設計


MAS-1 機械特性

密度	8.02	g/cm^3	1
ヤング率	182	GPa	1
ポアソン比	0.3	-	2
降伏強度	1.9	Gpa	3

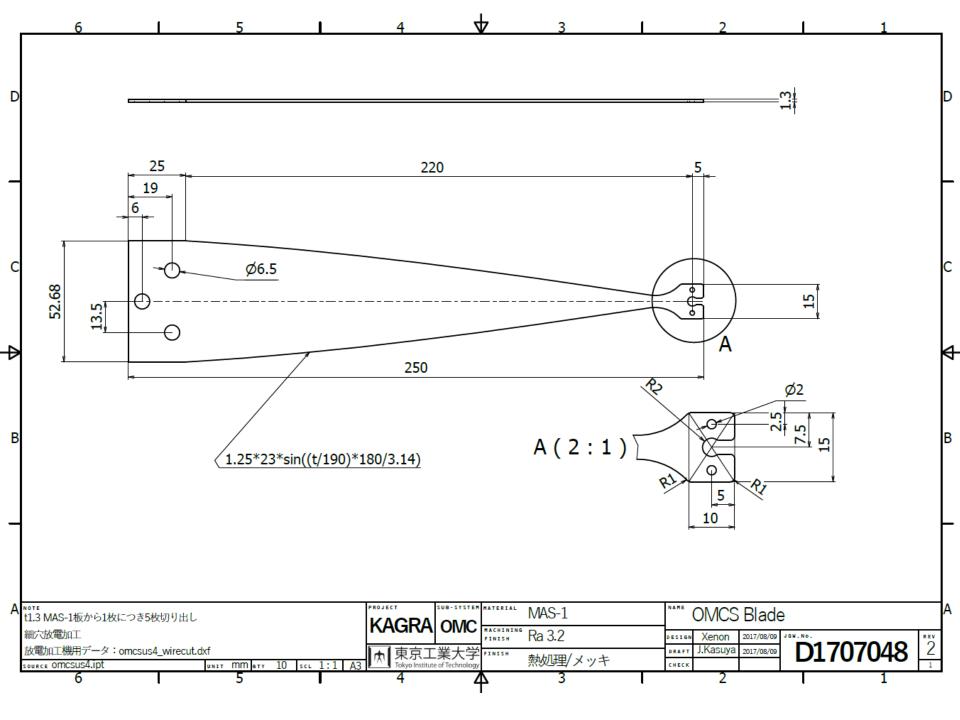
(1) http://www.tokkin.co.jp/materials/high_parformance/mas1


(2)http://www.matweb.com/search/datasheet.aspx?matquid=21ef3da44cb0409f916f3ee6c817dc02&n=1&ckck=1

(3)F. Frasconi, R. Valentini, R. Ishak, "Characterization measurements of the Maraging steel used in the blades construction for the KAGRA experiment"

Nastran解析

- 非線型大変形解析
- 先端に43N荷重
- Mathematicaで計算した板幅だとworking stressが852MPaとなり安全率が3 を大幅に下回るので幅を1.25倍し補強
- Working stress 640MPa
- 安全率~3



板バネまとめ

Material	MAS-1	
Mass	4.3 kg	OMCBB+光学素子 13kg/3本吊り
Length	220 mm	MAS-1板形状による
Width	~52.5 mm @bottom	Nastran解析結果による
Thickness	1.3 mm	MAS-1板形状による
Initial angle	45 deg	縦横カップリングの制約による
Radius of blade	190 mm	目標安全率による
Number of blade	3	デザインコンセプト
Working stress	640 MPa	Nastran解析による
Resonant freq.	2.23 Hz	Mathematica計算

放電加工

- 加工データ: omcsus4_wirecut.dxf
- メッキ処理のため切断面の表面粗さRa3.2で3発の3回切りを指定
- 穴はドリルで開けるとバリが出るので細穴放電加工指定

