The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope

Yuta Michimura

Department of Physics, University of Tokyo

on behalf of the KAGRA Collaboration

First Detection of GW

- Advanced LIGO detectors
- Binary black hole mergers GW150914 GW151226 GW170104
- "heavy" BHs

Global Network of GW Detectors

enhancing GW astronomy

Advanced LIGO (observing run O2)

Advanced Virgo (preparing for observation)

LIGO-India (approved)

KAGRA (construction)

Advanced LIGO

GW Astronomy (~5years)

- better sky localization & coverage (<10 deg² and 100 % with LHVK)
- better parameter estimation (spin, distance, etc.)

S. Fairhurst, CQG 28, 105021 (2011)

- more BH-BH mergers

 origin of ~30 Msun BH, test of general relativity
- first detection of BH-NS merger, NS-NS merger NS equation of state origin of short gamma ray burst?

GW Telescope in Japan: KAGRA

- under construction in Kamioka mine, Japan
- project approved in 2010
- 60+ institutes, 200+ collaborators
- 3-km interferometric GW telescope

KAGRA

Interferometer Configuration

KAGRA Estimated Sensitivity

• NS-NS 152 Mpc, BH-BH 1.2 Gpc, SN ~10² kpc (1.4-1.4 Msun) (30-30 Msun)

Current Status of KAGRA

• successfully completed the first test run at room temperature

- working for the first cryogenic test run by March 2018 (Phase 1)
 - cryogenic sapphire mirror suspensions
 - room temperature mirror suspensions
 - pre-stabilized laser upgrade

Phase 1 Configuration

Cryostat Cooling Test

Cryogenic Mirror Test Installation

Room Temp. Mirror Installation

Pre-stabilized Laser Upgrade

MCE_TRANS At 2017-06-16-03-49-50 UTC X center: 354.7 **ETMY** Y center: 257.8 June 17, 2017 Laser IŇČ stabilized 2 W laser (1064 nm, CW)

June 14, 2017

16

Phase 1 Installation On Going **ETMY** stay tuned for the first km-scale cryogenic cooling test interferometer vibration locked isolation under commissioning system installation installing PR2 PRM IFI **ETMX** Laser IMC stabilized 2 W laser BS PR3 (1064 nm, CW) SR2 SR3 installed 17 GW signal

Summary

- The era of gravitational wave astronomy has begun
- Fruitful science with global network
 - better sky localization, sky coverage, parameter estimation
 - origin of heavy stellar-mass black holes
 - NS-NS, NS-BH binaries
 - multi-messenger astronomy
- GW telescope in Japan: KAGRA
 - unique features: underground and cryogenic
 - completed initial-phase test run
 - first cryogenic test run in March 2018
 - observing runs by ~2020

Supplementary Slides

2G/2G+ Parameter Comparison

	KAGRA	AdVirgo	aLIGO	A+	Voyager
Arm length [km]	3	3	4	4	4
Mirror mass [kg]	23	42	40	80	200
Mirror material	Sapphire	Silica	Silica	Silica	Silicon
Mirror temp [K]	23	295	295	295	123
Sus fiber	35cm Sap.	70cm SiO ₂	60cm SiO ₂	60cm SiO ₂	60cm Si
Fiber type	Fiber	Fiber	Fiber	Fiber	Ribbon
Input power [W]	78	125	125	125	140
Arm power [kW]	280	700	710	1150	3000
Wavelength [nm]	1064	1064	1064	1064	2000
Beam size [cm]	3.5 / 3.5	4.9 / 5.8	5.5/6.2	5.5/6.2	5.8/6.2
SQZ factor	0	0	0	6	8
F. C. length [m]	none	none	none	16	300

LIGO parameters from LIGO-T1600119, AdVirgo parameters from JPCS 610, 01201 (2015) KAGEA parameters are v201609

Roadmap of KAGRA

- Completed first test run at room temperature. Working for cryogenic test run.
- Baseline KAGRA (bKAGRA) in 3 phases.

Observation Scenario

• With 25-40 Mpc in 2020, 40-140 Mpc in 2021

Initial KAGRA Configuration

ETMY

- 3 km Michelson at room temperature
- Low power
- Simplified suspension

iKAGRA Test Run in 2016

KAGRA 試驗運動

3016 3 35

- Period
 - March 25 to 31
 - April 11 to 25
- Purpose
 - confirm layout
 of the 3 km
 vacuum ducts

- test controls,

- data transfer, observation shift, etc.
- get environmental data
- obtain experiences of the management and operation of the km-class interferometer

iKAGRA Sensitivity

- ~3e-15 /rtHz @ 100 Hz
- Limited by seismic noise, acoustic noise and 10^{-9} **ADC** noise
- Reduction possible in **bKAGRA**

KAGRA Cryopayload

Provided by T. Ushiba and T. Miyamoto

3 CuBe blade springs

MN suspended by 1 Maraging steel fiber (35 cm long, 2-7mm dia.) MRM suspended by 3 CuBe fibers

Heat link attached to MN

IM suspended by 4 CuBe fibers (24 cm long, 0.6 mm dia) IRM suspended by 4 CuBe fibers

• 4 sapphire blades

TM suspended by 4 sapphire fibers (35 cm long, 1.6 mm dia.) RM suspended by 4 CuBe fibers

Platform (SUS, 65 kg)

Marionette (SUS, 22.5 kg

Intermediate Mass (SUS, 20.1 kg, 16.3 K)

Test Mass (Sapphire, 23 kg, 21.5 K)