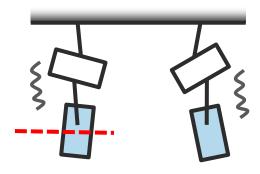
Control Optimization for KAGRA VIS

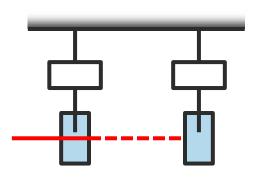
Koki Okutomi Sokendai D3, NAOJ

Internal seminar, Jun. 28, 2017

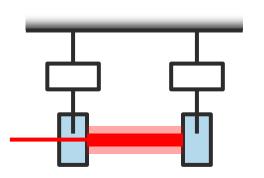


• Listen to me

What Is "Optimum"

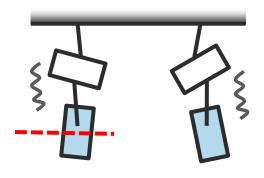

DEPENDS ON SITUATIONS!!

Optimum for Suspension Control

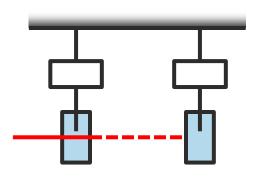

Calm-down phase

Damp resonant modes to get optical signals

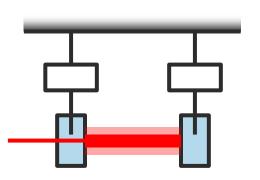
Lock acquisition phase


Achieve interferometer to be locked smoothly

Observation phase


Keep interferometer stably locked with low control noise @ > 10 Hz

Requirements for Suspension Control


Calm-down phase

1/e decay time < 60 sec.

Lock acquisition phase

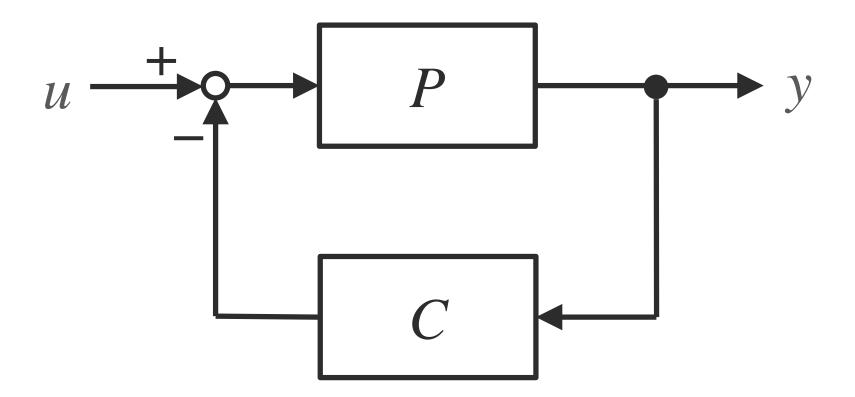
RMS velocity < 0.5 um/sec RMS angle < 0.2 urad

Observation phase

Control noise < 1×10^{-19} m/Hz^{1/2} @ 10 Hz Long-term drift < (2nm), 0.2 urad /day

What Is Optimization?

A problem to find a parameter set $\boldsymbol{x} = \{x_1, x_2, \dots, x_n\}$ which minimize or maximize the objective function $f(\boldsymbol{x})$ such as $f(\boldsymbol{x}) : \mathbb{R}^n \to \mathbb{R}$.


To state this problem,

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}),$$

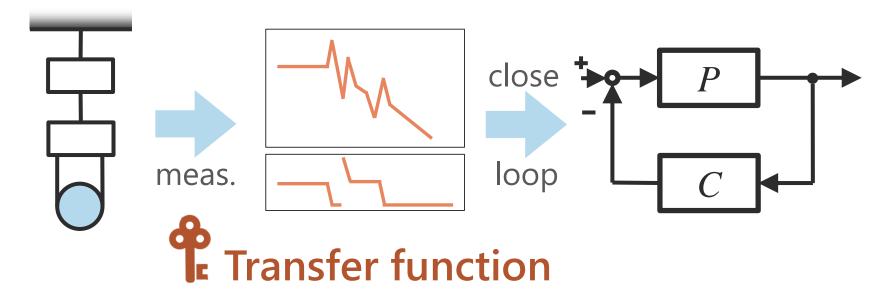
subject to

$$g_i(\boldsymbol{x}) \le 0, \ i = 1, ..., m$$

 $h_i(\boldsymbol{x}) = 0, \ i = 1, ..., p$

Optimization in Feedback Control

To design a controller C to realize "optimal" behavior of the plant P


How to Realize Optimal Controller?

To set an objective function $f(oldsymbol{x})$, one needs an analytical model which represents behavior of the plant

Model-based control

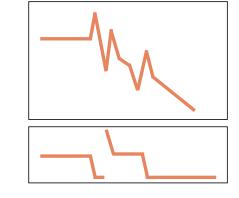
Controller Design in Classical

- Single-input single-output (SISO)
- Frequency domain
- Linear, time-invariant

Controller Design in Model-based

- Multi-input multi-output (MIMO)
- Time domain
- (non-linear, time-variant system)

A mathematical model of a physical system as a set of input, output and state variables related by **first-order differential equation**,


$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t),$$

$$\boldsymbol{y}(t) = C\boldsymbol{x}(t) + D\boldsymbol{u}(t).$$

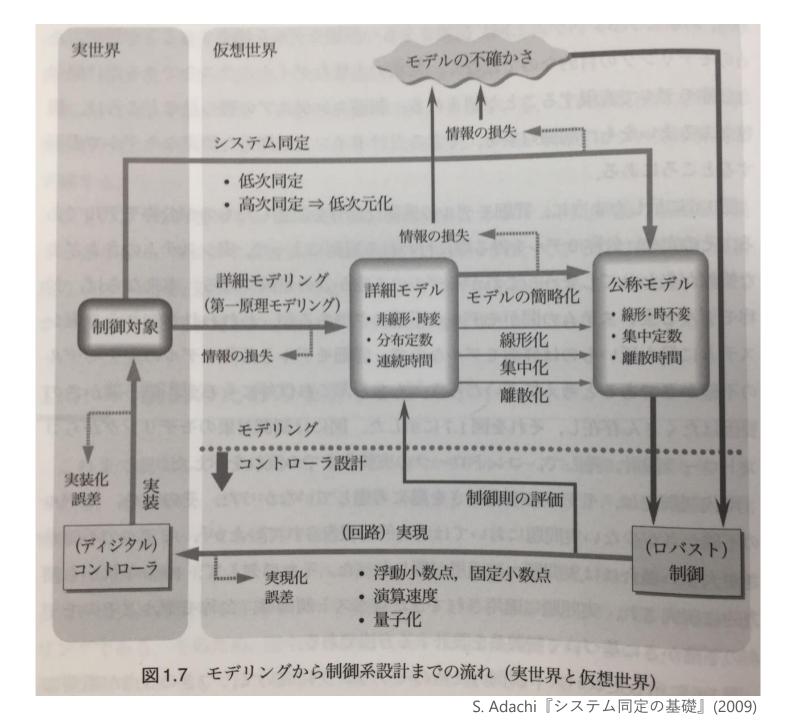
Here,

- $oldsymbol{x} \in \mathbb{R}^n$: state variables
- $oldsymbol{u} \in \mathbb{R}^m$: system inputs
- $oldsymbol{y} \in \mathbb{R}^p\,$: system outputs

- A : system matrix ($n \times n$)
- B : input matrix ($n \times m$)
- C : observation matrix ($n \times p$)

Stability of System

Transfer function


Stable if the real part of all poles is < 0

 $\dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u}$ $\boldsymbol{y} = C\boldsymbol{x} + D\boldsymbol{u}$

Stable if the real part of all eigenvalues of the system matrix A is < 0

(Full) State Feedback

If we set the system input as

$$\boldsymbol{u}(t) = -F\boldsymbol{x}(t),$$

(BLANK)

Observability and Controllability

(BLANK)

(BLANK)

Linear Quadratic Gaussian Regulator

評価関数

$$J = \sum_{i=1}^{n} q_i J_{x_i} + \sum_{j=1}^{p} r_j J_{u_j} = \int_0^\infty \left(\sum_{i=1}^{n} q_i x_i(t)^2 + \sum_{i=1}^{n} r_j u_j(t)^2 \right) dt$$

評価関数の重み $q_i \ge 0, r_j > 0$ の役割

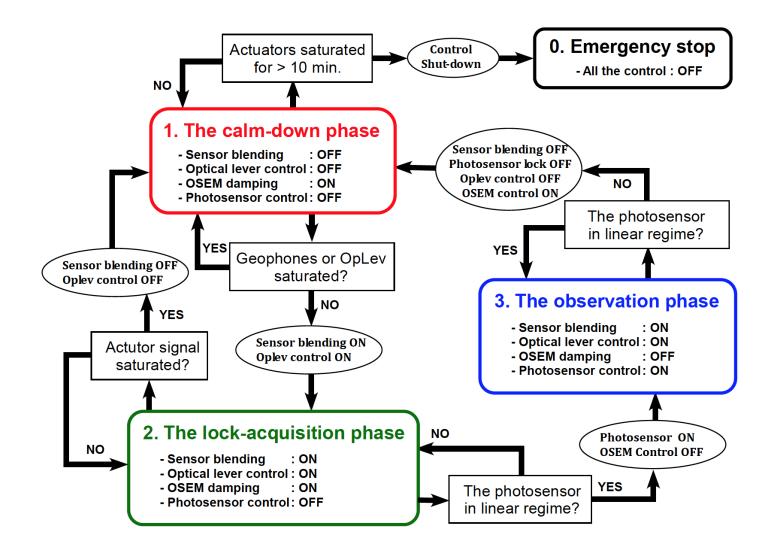
- q_i ≥ 0 を大きくすれば、"状態 x_i(t) の 0 への収束の速さ (J_{xi}を小さくすること)"を重視することになる。
- r_j > 0を大きくすれば、"操作量 u_j(t) が過大でないこと (J_{uj}を小さくすること)"を重視することになる。

To implement optimal hierarchical controller with Kalman filter to Type-A control

Feasibility in control test of Type-A Tower @ETMX

Control Phase	Simulation	Measurement
Calm-down	\bigcirc	0
Lock acquisition	\bigcirc	×
Observation	0	X

Problem on Implementation


- Current KAGRA scheme: decoupling control
 - decouples sensor signals into each DoF of interest
 - implements servo filters in each mass-wise
 DoF
- New scheme: MIMO optimal control
 - has one MIMO controller

[1] JGW-P1504155: T. Sekiguchi, Ph.D. Thesis

[2] G. Vajente

