Re-considering bKAGRA EOM layout

May 2017
Yutaro Enomoto

default plan

JGW-D1503189-v3

Layout 3

- Simpler, but loses some f3 AM

- f1: PM and AM (depending on SRC detuning)
- f2: PM only
- f3: AM only (used only for lock acquisition phase)

default plan

JGW-D1503189-v3

Layout 3

- Simpler, but loses some f3 AM

- f1: PM and AM (depending on

SRC detuning)

- f2: PM only
- f3: AM only (used only for lock acquisition phase)

= Let us focus on $\mathrm{f} 1=$

= Let us focus on $\mathrm{f} 1=$

= Let us focus on $\mathrm{f} 1=$

- f1: PM and AM (depending on SRC detuning)

after delay line
(f1 sidebands rotates by 180°)

alternative plan

JGW-D1503189-v3

Layout 3

- Simpler, but loses some f3 AM

- f1: PM and AM (depending on SRC detuning)
- f2: PM only
- f3: AM only (used only for lock acquisition phase)

alternative plan

alternative plan

delay line 2.66 m --> $\theta\left(f_{1}\right)=54^{\circ} \quad-->$ combination of PM and AM (next page)

$$
\theta\left(f_{3}\right)=180^{\circ} \quad-->\text { AM only (} \phi=180^{\circ} \text { is preferable) }
$$

alternative plan

- f1: PM and AM
- f3: AM only
delay line 2.66 m --> $\theta\left(f_{1}\right)=54^{\circ}$

$$
\theta\left(f_{3}\right)=180^{\circ}
$$

$$
\begin{aligned}
2 A+m & \left\{\left[\cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)+\cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right) \mathrm{e}^{i \phi}\right] \mathrm{e}^{i \omega_{m} t}\right. \\
& \left.-\left[\cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right)+\cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right) \mathrm{e}^{i \phi}\right] \mathrm{e}^{-i \omega_{m} t}\right\}
\end{aligned}
$$

2.66 m vs. 7.99 m

delay line 2.66 m --> $\theta\left(f_{1}\right)=54^{\circ}$
delay line $7.99 \mathrm{~m}-->\theta\left(f_{1}\right)=162^{\circ}$

$$
\begin{aligned}
2 A+m & \left\{\left[\cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)+\cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right) \mathrm{e}^{i \phi}\right] \mathrm{e}^{i \omega_{m} t}\right. \\
& \left.-\left[\cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right)+\cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right) \mathrm{e}^{i \phi}\right] \mathrm{e}^{-i \omega_{m} t}\right\}
\end{aligned}
$$

Remaining issues

-- Probably we need some control on the phase difference.

- How can we the phase difference? Resonant EOM => phase of transfer function modulation/applied voltage can be different for two EOMs and can even be time dependent.
-- We need to consider the effect of asymmetries with respect to the requirement; modulation depths of two EOMs, non-perfect mid-fringe lock, non-perfect dark-fringe lock, etc..
-- and what else?

delay line 2.66 m --> $\theta\left(f_{1}\right)=54^{\circ}$

$$
\theta\left(f_{3}\right)=180^{\circ}
$$

$$
\begin{aligned}
2 A+m & \left\{\left[\cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)+\cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right) \mathrm{e}^{i \phi}\right] \mathrm{e}^{i \omega_{m} t}\right. \\
& \left.-\left[\cos \left(\frac{\pi}{4}+\frac{\theta}{2}\right)+\cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right) \mathrm{e}^{i \phi}\right] \mathrm{e}^{-i \omega_{m} t}\right\}
\end{aligned}
$$

