ADJ Gravitational Wave Physics and Astronomy Workshop **Fast localization** (Annecy, May 30th – June 2nd, 2017) with a hierarchical network of gravitational wave detectors

Y. Fujii*, T. Adams^A, F. Marion^A, R. Flaminio (NAOJ, LAPP^A) *Email: yoshinori.fujii@nao.ac.jp

Introduction

We present expected fast sky localisation of coalescing binaries with a hierarchical search using three gravitational wave (GW) detectors, HLV (Hanford/Livingston/Virgo).

A hierarchical search can be used with a network of GW detectors with varying sensitivities, and is aimed at making effective use of the least sensitive detector's information. Here we demonstrate the sky localisation using a hierarchical search with the two higher sensitivity LIGO detectors and the less sensitive Virgo detector, using simulated signals.

Lliononchicol potruorly						
Flerarchical network	How to analyze:					throchold
			Higher sensitivity detectors		Je H	unreshold
For precise source localization: Triple (or more) coincidences	Higher sensitivity LIGO Hanford (H)	Lower sensitivity Virgo (V)	sub network detects candidate event.	S One templa	ate X	
At the beginning: Detectors with different sensitivity						Time
For actting more coincidences			Lacc concitiva datacto	-a464 - 635 - 63 - 62 - 615 - 61		threshold

For getting more coincidences: Set a lower threshold, as long as not too many background triggers

Analyze hierarchically!

Higher sensitivity Lower sensitivity **LIGO** Livingston (L) KAGRA(K)

Less sensitive delectors are added into network 1. with lower SNR threshold 2. using same parameters & 3. a small window around time of double coincidences.

(At the beginning)

-> How does this approach improve the localization?

Calculation setup

Assumptions:

High sensitivity: HL \rightarrow 70 Mpc, Low sensitivity: V (for 1.4–1.4 M_{\odot} BNS range) 2nd lst ΕM GW detectors) MBTA [1] 🔫 BAYESTAR [2] \rightarrow telescopes H L VSignal Sky map **Event info:** Compact probability **Binary** Time of arrival, etc. Coalescence

Calculation main flow:

ſ	Inputs		Localization performance			Usina	
	Time of arrival		Accuracy			248	

= metadata + Gauss(0,1) SNR Time = metadata + Gauss(0,0.66 ms* $\frac{6}{SNR}$) Phase = metadata + Gauss(0,0.25 rad)

Summary

- 1. We investigated the expected fast localization performance with a hierarchical network using HLV.
- 2. We demonstrated that the hierarchical network effectively improved the accuracy & precision when V threshold is set to ~ 3.5 , if BNS range of V detector is greater than 15 Mpc.
- 3. The hierarchical search will be most useful when adding new detectors, which are less sensitive as they are undergoing commissioning, to the network.

References : [1] T. Adams et. al., Class. Quant. Grav. 33 (2016) [2] L. P. Singer, L. R. Price, Phys. Rev. D **93**, 024013 (2016)

Future work:

1. Investigate the localization with HLVK hierarchical network

2. Implement in online analysis