Possibility of Upgrading KAGRA

May 22, 2017

Yuta Michimura

Department of Physics, University of Tokyo

with much help from Kentaro Komori, Yutaro Enomoto, Koji Nagano, Kentaro Somiya, Sadakazu Haino

KAGRA Configuration

KAGRA Sensitivity (v2017)

• BNS range 158 Mpc, BBH(30Msun) range 1.0 Gpc

4

KAGRA vs Other 2G

• Not better even with cryogenic and underground

5

Seismic Noise

Thermal Noise

- Cryogenic temperature high Q (low loss) sapphire reduces thermal noise ^(C)
- Thick sapphire fibers to extract heat increase suspension thermal noise (8)
- Smaller beam sizes because of smaller mirrors increase coating thermal noise (2)

Quantum Noise

- 23 kg mirror was the largest (aLIGO: 40 kg, AdVirgo: 42 kg) Smaller mirror increases adiation proces
- Smaller mirror increases radiation pressure noise (8)

 Less laser power because of limited heat extraction increases shot noise \mathfrak{S} Intra-cavity power KAGRA: 400 kW, aLIGO/AdVirgo: 700 kW

Ideas for Improving Sensitivity

- Increase the mass
 - GAST project (upto 30 cm dia. ?)
 - composite mass
 - A-axis sapphire (upto 50 kg, 26 cm dia.)
 - non-cylindrical mass (upto 30 kg)
 - go silicon (upto 200 kg, 45 cm dia.)

- (no birefringence)
- Frequency dependent squeezing (Filter cavity)
 - effectively increase mass and laser power
- Better coating, low absorption mirror
- Better cryogenic suspension design
- ETM different from ITM, half-cryogenic, delay-line, folded arms, higher-order modes, suspension point interferometer???

Integrated Design Study

- We need a plan to integrate these ideas
- To begin with, some example plans were proposed
- Plan: Blue (by Yutaro Enomoto)
 use heavier sapphire mirrors
- KAGRA
- Plan: Black (by Kentaro Komori) use silicon mirrors

- (working title)
- Plan: Brown (by Koji Nagano) lower the power to focus on low frequency
- Plan: Red (by Sadakazu Haino) increase the power to focus on high frequency

KAGRA+ Sensitivity: Blue

KAGRA+ Sensitivity: Black

 Silicon 123 K, 1550 nm, radiative cooling 10-20 BNS 296 Mpc Mass: 114 kg Se BBH 3.2 Gpc (50 cm dia., 10⁻²¹ 25 cm thick) sensitivity [1/VHz P BS: 500 W 10⁻²² Fiber: 30 cm, 0.8 mm dia. 10⁻²³ Coating+M φ_susp: 1e-8 Quantum φ_coat: 1e-4 r_beam: 8.6 cm 10⁻²⁴ 100m F. C. 10 dB input sqz T SRM: 16 % 10⁻²⁵ 10^{0} 10^{2} 10^{4} 10^{1} 10^{3}

frequency [Hz]

KAGRA+ Sensitivity: Brown

• Same test mass, low power, high detuning, 20 K 10-20 BNS 133 Mpc Mass: 23 kg BBH 1.7 Gpc (22 cm dia., 10⁻²¹ Quantum 15 cm thick) sensitivity [1/√Hz P BS: 5.7 W 10⁻²² Fiber: 88 cm, 0.32 mm dia. 10⁻²³ Coating+Mig φ_susp: 2e-7 φ_coat: 5e-4 r_beam: 3.5 cm 10⁻²⁴ No sqz T SRM: 4.35 % 10⁻²⁵ 10^{2} 10^{4} 10^{0} 10³ 10^{1} 15 frequency [Hz]

KAGRA+ Sensitivity: Red

• Same test mass, high power, 24 K 10⁻²⁰ BNS 191 Mpc Mass: 23 kg Se BBH 0.8 Gpc (22 cm dia., 10⁻²¹ 15 cm thick) sensitivity [1/√Hz P BS: 5.7 W 10⁻²² Fiber: 20 cm, 2.4 mm dia. Quantum 10⁻²³ Coating+Micror φ_susp: 2e-7 φ coat: 5e-4 r_beam: 3.5 cm iens. 10⁻²⁴ No sqz

 10^{-25} T_SRM: 4.94 % 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} T_SRM: 4.94 % frequency [Hz] 10³ 10⁴ 10⁴ 16

Sensitivity Comparison

• Also feasibility study necessary

Astrophysical Reach Comparison

• Science case discussion is necessary

Discussions

- What is the best figure of merit to compare the plans?
 - Sensitivity curve (with error bars)?
 - Inspiral range? What mass?
 - Event rate (with error bars)?
 - Parameter estimation accuracy?
- Broadband or narrowband in high event rate regime by aLIGO + AdVirgo?
 - Does 4th detector help parameter estimation?
- What about real 3G detector (~10 km class)?
 - Asia-Australian 8-km detector?
 - Where?

Summary

- Many ideas for improving the sensitivity have been proposed, and some R&D are on going
- Sensitivity design study on future KAGRA upgrade to integrate these ideas is necessary
- There are some example plans
- Need more serious discussion based on science, feasibility, budget and timeline
- Any comments? New ideas?

Supplementary Slides

2G/2G+ Parameter Comparison

	KAGRA	AdVirgo	aLIGO	A+	Voyager
Arm length [km]	3	3	4	4	4
Mirror mass [kg]	23	42	40	80	200
Mirror material	Sapphire	Silica	Silica	Silica	Silicon
Mirror temp [K]	21	295	295	295	123
Sus fiber	35cm Sap.	70cm SiO ₂	60cm SiO ₂	60cm SiO ₂	60cm Si
Fiber type	Fiber	Fiber	Fiber	Fiber	Ribbon
Input power [W]	78	125	125	125	140
Arm power [kW]	400	700	710	1150	3000
Wavelength [nm]	1064	1064	1064	1064	2000
Beam size [cm]	3.5 / 3.5	4.9 / 5.8	5.5 / 6.2	5.5 / 6.2	5.8 / 6.2
SQZ factor	0	0	0	6	8
F. C. length [m]	none	none	none	16	300

LIGO parameters from LIGO-T1600119, AdVirgo parameters from JPCS 610, 01201 (2015)

KAGRA Detailed Parameters

• Optical parameters

- Mirror transmission: 0.4 % for ITM, 10 % for PRM, 15.36 % for SRM
- Power at BS: 780 W
- Detune phase: 3.5 deg (DRSE case)
- Homodyne phase: 133 deg (DRSE case)

• Sapphire mirror parameters

- TM size: 220 mm dia., 150 mm thick
- TM mass: 22.8 kg
- TM temperature: 21.5 K
- Beam radius at ITM: 3.5 cm
- Beam radius at ETM: 3.5 cm
- Q of mirror substrate: 1e8
- Coating: tantala/silica
- Coating loss angle: 3e-4 for silica, 5e-4 for tantala
- Number of layers: 9 for ITM, 18 for ETM
- Coating absorption: 0.5 ppm
- Substrate absorption: 20 ppm/cm

• Suspension parameters

- TM-IM fiber: 35 cm long, 1.6 mm dia.
- IM temperature: 16.3 K
- Heat extraction: 6580 W/m/K
- Loss angle: 5e-6/2e-7/7e-7 for CuBe fiber?/sapphire fiber/sapphire blade

• Inspiral range calculation

- SNR=8, fmin=10 Hz, sky average constant 0.442478
- Seismic noise curve includes vertical coupling, vibration from 23 heatlinks and Newtonian noise from surface and bulk

KAGRA Cryopayload

Provided by T. Ushiba and T. Miyamoto

3 CuBe blade springs

MN suspended by 1 Maraging steel fiber (35 cm long, 2-7mm dia.) MRM suspended by 3 CuBe fibers

Heat link attached to MN

IM suspended by 4 CuBe fibers (24 cm long, 0.6 mm dia) IRM suspended by 4 CuBe fibers

• 4 sapphire blades

TM suspended by 4 sapphire fibers (35 cm long, 1.6 mm dia.) RM suspended by 4 CuBe fibers

Platform (SUS, 65 kg)

Marionette (SUS, 22.5 kg

Intermediate Mass (SUS, 20.1 kg, 16.3 K)

Test Mass (Sapphire, 23 kg, 21.5 K)

Newtonian Noise from Water

• Measured v = 0.5~2 m/s \rightarrow seems OK

2-3G Sensitivity Comparison

