

Status of Geophysics Interferometer

Kouseki Miyo

*A.Araya, *A.Takamori, **W.Morii, M.Ohashi

* Earthquake Research Institute

** Disaster Prevention Research Institute

Institute for Cosmic Ray Research

Mar 21, 2017

(IW3@Academia Sinica,

Contents

- Introduction
- Subsystem
 - Optical system
 - Vacuum system
 - DAQ system
- Observation results
- Baseline monitor for KAGRA
 - Plan for Crustal motion compensation system
- Summary

Introduction

KAGRA has a long baseline strain meter named "GIF"

We can observe the crustal motion very precisely.

Subsystem/

Subsystem

- Main Interferometer
- Input & Output optics
- Laser
- Vacuum system
- DAQ system

GIF/ Main Interferometer

$$\Delta strain = 2\pi \frac{\Delta L}{\lambda/2} \frac{1}{1500}$$

 Strain signal is displayed as a rotation in left figure

GIF/ Input & Output optics

Mode matching telescope

- Reflecting telescope (10 m, folded)
 - Flat and concave mirrors (RC 10 m) and a lens
 - Installed in air (out of vacuum)
 - Fully covered to eliminate air disturbances

Mode matching

- Waist diameter at end reflector ~ 35 mm
- Designed to minimize beam diameter at BS (~ 40 mm)

Beam cover

GIF/ Laser

lodine stabilized laser

- Frequency doubled Nd:YAG laser (532 nm)
 - Locked to l₂ absorption line
 - Extremely stable quantum standard
 - Modulation transfer technique
- Expected stability (strain resolution): 10⁻¹³
- Delivered via optical fiber

Laser optical system

GIF/ Vacuum System

Contains main interferometer

- Vacuum tanks for main optics at both ends
 - Granite platforms directly attached to bedrock
 - Double-balanced bellows to eliminate stress
- 1500 m vacuum tube
- Target vacuum pressure: 10⁻⁴ Pa
 - Maintained by TMPs

GIF/ Convert to Strain

Basically, measurement range is not limited. Wide range measurement.

GIF/ DAQ

- PXI is for ADC and laser control.
- Client user can get the strain data outside of KAGRA.
- Strain data is almost realtime
 (1 minutes delay due to a converting time).
- DAQ is designed independently from KAGRA

We are taking the strain data from last August.

Observation result/

Result/ Comparison of Theoretical model

- Measured strain signal consistents with theoretical model (GOTIC2) which includes under ground effect (× 0.9).
- This effect was evaluated by 100 m laser strainmeter located on same KAGRA mountain. (Takemoto et al. 2006)
- GIF observed local place effect.
- We are evaluating the underground information e.g. inhomogeneous, shape of the tunnel.

Observation result/ Sensitivity

Lowest back ground, especially around 1-10 mHz

Baseline Monitor for KAGRA

- The same as GW detector, GIF's sensitivity is getting worse above a few Hz. (~7 Hz).
- Fortunately, We can directly measure microseismic (~ 0.1 Hz < 7 Hz) which is the biggest reason of GW detector instability.
- GIF also measure lower frequency crustal motion.
 Seismometer can't measure below mHz.

 Because GIF can measure low frequency and directly unlike seismometer, GIF data is a good baseline monitor for KAGRA.

Baseline Monitor/ Crustal Motion Compensation

• Feedforward CARM and DARM which converted from the X and Y arm crustal motion signal to wide range actuator e.g. LVDT at Type-A.

- However, we have only X arm.
- First, We compensate only CARM.
- We can calculate CARM using coupling matrix of KAGRA mountain (Takemoto et al. 2006)

Baseline Monitor/ Plan

