Photothermal Common-path Interferometryを 用いたMoth eyeコーティングの吸収率測定

三尾研究室 M2 柳光 孝紀

- 背景
 - ▶レーザーと熱▶ Moth eye構造
- 原理

Photothermal Common-path Interferometry

- 実験方法
- 結果
- まとめ
- ・今後の展望

背景

背景

- 高出力かつ高品質なレーザーが求められている領域
 - •重力波検出器

・レーザー加エ

背景

背景

•Moth eye構造とは

Moth eye構造: 蛾の目からヒントを得た低反射構造 界面での屈折率がゆるやかに変化 🛑 低反射率

背景

•先行研究

市販のARコーティングと反射率を比較した結果

A: Moth eye, B: 多層膜ARコーティング, C: 屈折率分布ガラス, D: MgF2コーティング

Moth eye構造は市販のARコーティングに置き換えられ得る

背景

・本研究の目的

Moth eye構造:基板を直接加工した低反射構造

Photothermal Common-path Interferometry(PCI)で測定

•Photothermal Common-path Interferometry(PCI)の原理

干渉縞の変化はdistorted光に比例

吸収率A、pump光強度、probe光強度に比例 参照試料との比較で吸収率Aが求まる

$$A = \alpha \times \frac{1}{(\text{pump光强度})} \times \frac{(干渉縞の変化)}{(\text{probe光强度})}$$

 $\alpha:$ 比例定数

実験方法

·測定方法

重力波交流会

実験方法

·測定方法

実験方法

- •測定試料
 - 基板はすべて石英
 - 比例定数 α 参照用

ONb2O5をコーティングした石英(吸収率が0.02)

- ・Moth eye構造と誘電体多層膜を利用した ARコーティングの吸収率の比較用試料
 - 〇基板に直接Moth eye加工を施した試料
 - ○誘電体多層膜ARコーティングをもつ試料 (2種類)

結果

・吸収率の値

面内分布のデータには汚れ等による 大小のピーク

面内分布のデータ

吸収率の測定結果

試料	吸収率(×10 ⁻⁵)	Moth eyeとの比
基板に直接Moth eye加工を施した試料	0.098	1
誘電体多層膜ARコーティングをもつ試料A	7.4	75.5
誘電体多層膜ARコーティングをもつ試料B	5.1	52.0

➡ Moth eye構造の方が数10分の1小さい

要因:材質の違い ARコーティング:誘電体多層膜、Moth eye構造:石英

重力波交流会

•Moth eye構造の吸収率

Moth eye有とMoth eye無とを比較

○基板に直接Moth eye加工を施した試料 −
vs
○基板のみの試料 −

結果

•Moth eye構造の吸収率

Moth eye有とMoth eye無とを比較

結果

・Moth eye有とMoth eye無の吸収率の測定結果

試料	吸収率(×10 ⁻⁵)
基板に直接Moth eye加工を施した試料	0.098
基板のみの試料	0.057

試料	吸収率(×10 ⁻⁵)
Moth eye加工を施した樹脂を コーティングした試料	220
Moth eyeの無い樹脂をコーティングした試料	97

Moth eye有の方がMoth eye無より2倍ほど大きい

この要因について考察

表面積の比に着目して比較

結果

•Moth eye構造の吸収率が決まる要因を考察

原子間力顕微鏡(AFM)での観察結果

基板に直接Moth eye加工を施した試料

Moth eye構造:表面積が増加 AFMのデータから表面積を導出

Moth eye加工を施した樹脂を コーティングした試料

結果

•Moth eye構造の吸収率が決まる要因を考察

吸収率の比と表面積の比とを比較

試料	吸収率の比	表面積の比
基板に直接Moth eye加工を施した試料	1 70	2.39
基板のみの試料	1.72	

試料	吸収率の比	表面積の比
Moth eye加工を施した樹脂を コーティングした試料	2.25	2.09
Moth eyeの無い樹脂をコーティングした試料		

関連性は特に見られない

まとめ

・結果の考察

基板に直接Moth eye加工を施した試料は

吸収率が市販のARコーティングより2桁小さい

一方、Moth eye有とMoth eye無の比較では、
<u>Moth eye有の方がMoth eye無の2倍の大きさで留まった</u>

Moth eye構造の光学吸収は初めて測定されたデータ

ハイパワーレーザー用の光学素子として Moth eye構造は吸収の面で有利である

まとめ

・結果の考察

Moth eye構造の吸収率: Moth eye構造の表面積との関連は見られない

AFMで測定したデータと仕様書には乖離

試料	データの 参照元	突起の高 さ(nm)	突起間隔 (nm)	表面積の比
基板に直接Moth eye加工を 施した試料	AFM	193	247	2.39
	仕様書	350	250	3.41
Moth eye加工を施した 樹脂をコーティングした試料	AFM	201	351	2.09
	仕様書	350	350	2.74

仕様書の値で表面積を計算

3.41倍、2.74倍

この値については 今後さらに考察する必要がある

pump光は1064nmのみ → 他の波長をpump光として使用

AFMで形状を測定できていない可能性 → 正確に測定できるよう工夫

Moth eye構造は散乱が起こりやすい構造 → 散乱を測定

Moth eye構造での光学吸収 のメカニズムを考察 → 電場分布のシミュレーション

Moth eyeの光学的性質を明らかにしていけば、活躍できる領域も広がる

重力波交流会