Development of Power Recycling Seismic Attenuation System for KAGRA

Yoshinori Fujii

Contents

Performance test of iKAGRA PR3 SAS at Kamioka

- **1. Introduction**
- 2. Performance test
 - **2-1.** Damping performance test
 - 2-2. Residual vibration
- 3. Summary

1. Introduction iKAGRA PR3 SAS (= Type-Bpp SAS)

Sensors & actuators for active control (in iKAGRA)

Linear Variable Differential Transducer cantilever blade suspension wire **Keystone** clamp to payload fig. by T. Sekiguchi \rightarrow senses & actuates position of keystone

Sensors & actuators for active control (in iKAGRA)

Optical Sensor and Electro-Magnetic actuator (OSEM)

→ senses & actuates relative position of mass and recoil mass

Face to face meeting, 8th December, 2016

Assembly

October 2015 - February 2016 (test hanging & installation at Kamioka)

Frequency response is get along with the simulation?

2. Performance test (measured on 23-25, May, 2016)

2-1. Damping performance test

All the resonances can be damped within a short time with active control?

2-1. Damping performance test

All the resonances can be damped within a short time with active control?

Resonances to be taken care (< 20 Hz) \rightarrow 19 modes

Requirement in this test : 1/e decay time < 1 min.

Implemented control loops

Measured damping time: Control ON vs. Control OFF

Measured

0.659Hz

111

Ş

 10^{5}

104

10³

 10^{2}

 10^{1}

10⁰

 10^{-1}

10-2

10-2

1/e decay time [sec.]

1.036Hz

÷

 10^{-1}

Measured damping time: Control ON vs. Control OFF

- **1.** Simulation tends to tell larger natural Q factors than the actual ones.
 - → Actual feedback filters can be different from the simulated ones, due to actual Q factors.
 - → notch? cut-off frequency? ..
 → Filter tuning at the site would be needed.
- 2. To damp optic & recoil mass motion, sensing the optic motion is needed.

→ Is oplev available, even just after large disturbances ? (now investigating oplev's behavior after earthquakes.)

2-2. Residual vibration **Observation Damping phase** Lock acquisition phase phase

Model vs. Measurement

Seismic noise of Kamioka (on 2016.5.10)

In following calculation, seismic noise measured on 2016.5.10 is considered (blue one).

Measurement was done on 2016.5.24.

Angular fluctuation of the optic (Pitch) Model (based on20 16.5.10) vs. Measured (on 2016.5.24)

O Resonance frequency

- × 0.2 ~ 0.4 Hz structure
 - \rightarrow depends on seismic noise
- × Q factor (without control) \rightarrow lack of modeling

→ At least, about RMS, Simulation > actual behavior

RMS values

Control OFF (Model) : 4.4 um Control ON (Model) : 0.7 um

Control OFF (Measured) : 0.37 um Control ON (Measured) : 0.10 um

Expected fluctuation of the optic

THE UNIVERSITY OF TOKY

National Astron Observatory of

2. performance test

Measurement vs. Model

- 1. Actual Q factors < predicted Q factors (of free swinging)
 - \rightarrow Some simulated servo filters can be modified at the site.
- 2. Sensing TM motion is needed, in damping phase.
 - \rightarrow should be investigated if oplev is available in the damping phase.
- 3. Resonance peak \rightarrow model describes the actual behavior.
- 4. Simulated RMS > Actual RMS.

Using more sensors would be useful for more detailed characterization. (Seismometers, length sensor for Longitudinal motion of the optic, etc ..)

"iKAGRA data", which I'd like to include:

 \rightarrow Data for characterization of the iKAGRA PR3 SAS.

Back up

Other Type-Bpp measurement

Angular fluctuation of the mirror (Yaw) Measured

東京大学 HE UNIVERSITY OF TOKYO

Displacement fluctuation measured by TM-OSEM (Longitudinal) Model vs. Measured

Angular fluctuation measured by TM-OSEM (Pitch)

Model vs. Measured

Angular fluctuation measured by TM-OSEM (Yaw)

Measured

2-3. Type-Bpp at Kamioka vs. Type-B1proto at Tokyo Mitaka

////

VS.

Seismic noise : Kamioka vs. TAMA

Seismic noise of Kamioka on 2016.5.10 was smaller than that of Tokyo, by ~ one order of magnitude at 1 Hz, by ~ two order of magnitude at 10 Hz.

Angular fluctuation of the mirror (Type-B1proto vs. type-Bpp)

RMS values Control OFF (TypeB1proto) : 7.0 urad Control OFF (Measured) : 0.37 urad Control ON (Measured) : 0.10 urad

RMS values

Control OFF (TypeB1proto) : 37 urad Control OFF (Measured) : 0.63 urad Control ON (Measured) : 0.040 urad

0.3 Hz \rightarrow 0.4 Hz : Caused by the suspension point difference of the IM

Angular fluctuation measured by TM-OSEM (Pitch) Type-B1proto vs. type-Bpp

RMS values

Control OFF (TypeB1proto) : 4.0 urad

Control OFF (Measured) : 0.29 urad Control ON (Measured) : 0.11 urad

0.3 Hz \rightarrow 0.4 Hz : Caused by the suspension point difference of the IM

Angular fluctuation measured by TM-OSEM (Yaw) Type-B1proto vs. type-Bpp

RMS values

Control OFF (TypeB1proto) : 0.83 urad

Control OFF (Measured) : 0.13 urad Control ON (Measured) : 0.052 urad

No-controlled damping time comparison

Can be suffered from the aluminum sheet.

3. Summary

Performance test of iKAGRA PR3 SAS at Kamioka

The differences of p.22 can come from difference of

- **1. Seismic noise**
- 2. Suspension points
- 3. circuits, power supply,.. etc.

Contents

Performance test of iKAGRA PR3 SAS at Kamioka

- **1. Introduction**
- 2. Performance test
 - 2-1. Damping performance test
 - 2-2. Residual vibration

Development of bKAGRA PR SAS

- **3. Introduction**
- 4. Controllability test

東京大学 HE UNIVERSITY OF TOKYO

THE UNIVERSITY OF TOKYO

National Astrono

Controllability of Type-Bp SAS

Control loops in damping phase

Requirements for control

Making servo filters for the each phase

- **1. Damping phase**
- 2. Lock-acquisition phase
- 3. Observation phase

Damping

Requirement

- 1. Damping time < 1min.
- 2. RMS displacement (L) < 50 um
- 3. RMS displacement (T, V) < 1 mm
- 4. RMS displacement (P, Y) < 50 urad

Simulated damping time: Control ON vs. Control OFF

1/e decay time with and without controls Control OFF 10^{6} Control ON Requirement (1 min.) 10^{5} O = 10000 = 10 10^{4} 1/e decay time [sec] 10³ 10² 10 10^{0} 10-1 10⁻² 10^{-1} 10^{0} 10¹ 10^{3} 10^{2} 10-2 Frequency [Hz]

Model

GAS : DC

IM : Damping (IMOSEM→ IMOSEM)

If oplev is not available...

To be investigated :

if oplev is available just after large disturbance.

Simulated damping time: Control ON vs. Control OFF

Model

GAS : DC

IM : Damping (IMOSEM→ IMOSEM)

TM : Damping (TMoplev → TMOSEM)

Control loops in lock-acquisition phase

Requirements for control

Making servo filters for the each phase

- 1. Damping phase
- 2. Lock-acquisition phase
- 3. Observation phase

4.

**(下)から計算すると、要求値は

東京大学 THE UNIVERSITY OF TOKYO

Longitudinal displacement fluctuation with "KamiokaHighNoise"

With "KamiokaHighNoise"

Model

Longitudinal velocity fluctuation

with "KamiokaHighNoise"

Model

Control loops in observation phase

Requirements for control

Making servo filters for the each phase

- 1. Damping phase
- 2. Lock-acquisition phase
- 3. Observation phase

4.

- 1. Displacement (L) < 1e-15 m at 10 Hz
- 2. RMS displacement (L) < 70 um
- 3. RMS displacement (T, V) < 1 mm
- 4. RMS displacement (P, Y) < 2 urad

Longitudinal displacement fluctuation With "KamiokaHighNoise"

With "KamiokaHighNoise"

Model

Longitudinal velocity fluctuation

Model

Control loops in observation phase with IM-OSEMs (another option)

Longitudinal displacement fluctuation With "KamiokaHighNoise"

IM – IR : If IM-OSEM damping controls are ON (for L, T, V, R DoF)

Model

With "KamiokaHighNoise" Longitudinal displacement fluctuation

IM - IR:

If IM-OSEM damping controls are ON (for L, T, R DoF)

Using OSEM would be available only for type-Bp SAS though, maybe...

Assumed longitudinal seismic noise

TypeBpp SAS Eigen mode List : 24 modes

TypeBp SAS Eigen mode List : 36 modes

#31	#32	#33	#34	#35
78.843Hz More	78.843Hz More	97.094Hz More	98.66Hz More	100.617Hz More

