# Localization of coalescing binaries with a hierarchical network of gravitational wave detectors

### Work report at APP Yoshinori Fujii

This work is mainly supported by Frederique Marion, Thomas Adams and MBTA team (especially in LAPP)



# Contents

- **1. Introduction of LAPP and hierarchical search**
- 2. GW-EM follow up pipe line for low-latency CBC search
- 3. Calculation setup
- 4. Optimization of Virgo threshold
- 5. Summary and KAGRA related topic

# Introduction : SCAPP

### Laboratoire d'Annecy-le-vieux de Physique des Particules









ATLAS



LHCb



Development of low-latency GW search pipeline etc..

My work at LAPP was mainly about data analysis (not Vibration Isolation System)

# Introduction : SCAPP

### Laboratoire d'Annecy-le-vieux de Physique des Particules



# Topic : how newly constructed detectors should enter the detection network? ( in low-latency CBC search )



### Introduction :

Several detectors are needed for source localization (detection network)





5

The sensitivities of these detectors would be different from each other, especially just after their construction.

(ex. in observation 2 (O2), the higher sensitive 2 LIGOs, and the less sensitive Virgo)

In the Virgo or KAGRA, GW signals can be buried into noise easier than in LIGOs!

# Introduction :

### Especially, in the low-latency search for Compact Binary Coalescence (CBC)



### The detection threshold SNR of less sensitive detectors are wanted to be lowered..

Introduction :

However, if the threshold SNR is purely lowered, we have to handle tons of the triggers



→ Computational cost and time cost get large.. Not low-latency, anymore!

How about including the less sensitive detectors into the network,

- 1. with lower threshold SNR than that of higher sensitive detectors, but
- 2. only when we search triggers, generated from higher sensitive detector's coincidences.

# Introduction : "hierarchical search"



# Contents

- **1. Introduction of hierarchical search**
- 2. GW-EM follow up pipe line for low-latency CBC search
- 3. Purpose of this work
- 4. Calculation setup
- 5. Optimization of Virgo threshold
- 6. Summary and KAGRA related topic

# **GW-EM follow up pipe line for low-latency CBC search :**

https://arxiv.org/pdf/1512.02864.pdf



# Multi-Band Template Analysis (MBTA)

 $\rightarrow$  Split the matched filter across two (or more) frequency bands.

- → Shorter templates in each frequency band
- $\rightarrow$  Phase of the signal is tracked over fewer cycles.
- → Smaller sampling rate for low frequency band



**Computational cost reduction** 



### **BAYES**ian TriAngulation and Rapid localization (BAYESTAR)



12

If arrival timing

is not correct.

# Contents

- **1. Introduction of hierarchical search**
- 2. GW-EM follow up pipe line for low-latency CBC search
- **3. Purpose of this work**
- 4. Calculation setup
- 5. Optimization of Virgo threshold
- 6. Summary and KAGRA related topic

### Purpose of this work : in the hierarchical search with HLV,

- 1. What is the optimal threshold for the V1?
- 2. How the localization gets improved at the threshold?



# Definitions of the offset angle and the searched area :

### **<u>1. Offset angle</u>:**

Angle between the sky localization of the injected signal, and the reconstructed max probability pixel.

### 2. Searched area :

The smallest area of the highest confidence region around the max probability pixel, to include the sky location of the injected signal.



# Contents

- **1. Introduction of hierarchical search**
- 2. GW-EM follow up pipe line for low-latency CBC search
- 3. Purpose of this work
- 4. Calculation setup
- 5. Optimization of Virgo threshold
- 6. Summary and KAGRA related topic

### **Calculation setup : Main flow**

#### 3. Re-construct sky map



Calculation setup : How to transform the triggers, HL  $\rightarrow$  HL or HLV

### **Considered 3 patterns :**

Case 1 var. : HL  $\rightarrow$  HL or HL + random V

If *p* > FAP, otherwise

Suppose the V1 triggers from noises



Case2 : HL  $\rightarrow$  HL, or HL + V based on injection If V1 SNR < threshold, otherwise Suppose the V1 triggers from signals

🛑 Best case

#### Case 3 : $HL \rightarrow HL$ , or HL + random V, or HL + V based on injection

If *p* > FAP and V1 SNR < threshold, If *p* < FAP , If *p* > FAP and V1 SNR > threshold

Suppose the V1 triggers from both of noises and signals

Hore realistic case More realistic case

(How to generate the FAP, random V, V based on injection, is following)

### 1. "random V trigger : Vr "

1. SNR = Random above a threshold SNR, following measured O1 SNR distribution



 $t_0 = t_{H1}$  if  $SNR_{H1} > SNR_{L1}$ , otherwise  $t_0 = t_{L1}$ .

 $\Delta t =$  random uniform number from -35 ms to 35 ms.

3. Phase = random uniform number from 0 rad to 2  $\pi$  rad.



next page )



Plot SNR distribution from ~ about 20 hours data → Choose typical curve ( "quiet" )

### 1. "random V trigger : Vr "

1. SNR = Random above a threshold SNR, following measured O1 SNR distribution



 $t_0 = t_{H1}$  if SNR<sub>H1</sub> > SNR<sub>L1</sub>, otherwise  $t_0 = t_{L1}$ .  $\Delta t =$  random uniform number from -35 ms to 35 ms.

3. Phase = random uniform number from 0 rad to 2  $\pi$  rad.





 $FAP = 1 - \exp(-R \times T)$ 

R = cumulative rate of background triggers per template, above a given threshold, per template,

T = analyzing time for the V1 (less sensitive detector) -

70 ms for V1

22

### 2. "V based on injection : Vi "

1. SNR = SNR<sup>expected</sup> +  $\Delta$ SNR SNR<sup>expected</sup> = from injection metadata  $\Delta SNR = Gaussian(0, 1)$ 2. Timing =  $t^{\text{expected}} + \Delta t$  $t^{\text{expected}} = \text{injection meta data}$  $\Delta t = Gaussian(0, 1 ms)$ 3. Phase =  $\phi^{\text{expected}} + \Delta \phi$  $\phi^{\text{expected}} = \text{injection meta data}$  $\Delta \phi = \text{Gaussian}(0, 0.25 \text{ rad})$ 

These uncertainties are added to simulate more from realistic performance. The typical values are used.

# Contents

- 1. Introduction of hierarchical search
- 2. GW-EM follow up pipe line for low-latency CBC search
- 3. Purpose of this work
- 4. Calculation setup
- 5. Optimization of Virgo threshold
- 6. Summary and KAGRA related topic







# **Optimization of Virgo threshold :**

Typical result : Self-consistency test

→ Probability - Probability Plot :

90 % confidence area  $\rightarrow$  90% of injections should be included.

For the "case 2", V1 threshold SNR is set at 3.0.



→ Localization depends on :
 1. arrival timing difference

- 2. phase difference
- 3. relative SNR.

 $\rightarrow$  If the added uncertainties are properly, the curve should along with the diagonal line.

In this HLV search (blue), the curve gets below the diagonal line a little bit.  $\rightarrow$  The added uncertainties are not crazy (though a little bit not realistic ).

2. Timing = 
$$t^{\text{expected}} + \Delta t$$
  
 $\Delta t = \text{Gaussian}(0, 1 \text{ ms}) ----> 1 \text{ ms} \times \frac{6}{V1 \text{ SNR}}$  etc. ?



Collect the median values, with changing V1 threshold SNR



![](_page_30_Figure_0.jpeg)

The optimal threshold SNR for V1 is at around 3.5 ~ 4.0. (Threshold for H1, L1 = 5.0)

### **Optimization of Virgo threshold :**

# Is the optimal threshold still valid for the noisy case?

![](_page_31_Figure_2.jpeg)

What is happen if noisier SNR distribution, FAP are used?

### Calculation setup : How to transform the triggers, HL $\rightarrow$ HLV

#### Changed points :

![](_page_32_Figure_2.jpeg)

# **Optimization of Virgo threshold :**

If the background triggers are noisy, the localization can be worse. However, the optimal threshold for V1 still works.

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

ratio

0.8

0.4

0.2

Median 9.0

# Contents

- **1. Introduction of hierarchical search**
- 2. GW-EM follow up pipe line for low-latency CBC search
- 3. Purpose of this work
- 4. Calculation setup
- 5. Optimization of Virgo threshold
- 6. Summary and KAGRA related topic

### Summary

Investigated sky localization performance in "hierarchical search" with 3 detectors HLV, and look for the optimal threshold for V1

1. What is the optimal threshold for the V1?

 $\rightarrow$  Optimal threshold for V1 is around 3.5 ~ 4.

### 2. How the localization gets improved at the threshold?

 $\rightarrow$  Offset angle, searched area are reduced to ~70 % at the threshold, according to the setup.

→ even if the V1 is less sensitive than H1, L1, in the hierarchical search, V1 improves the sky localize performance, comparing to the double detector search.

 $\rightarrow$  The hierarchical search is useful to enter newly constructed detectors into the network.

### ... How about the "Hierarchical search" with 4 detectors HLVK ?

### KAGRA related topic (Just for introducing)

![](_page_36_Figure_1.jpeg)

1) K1 Noise curve

2) K1 Horizon distance are same as V1:

H1, L1 = 70 Mpc, V1, K1 = 20 Mpc.

3) V1, K1 thresholds are set as same.

![](_page_36_Figure_6.jpeg)

Look for the optimal threshold SNR for V1, K1, in this search.

# KAGRA related topic : Setup

(Parameters for V1, K1 are mostly same in each other.)

**False Alarm Probability** 

# SNR distribution ( per template )

![](_page_37_Figure_3.jpeg)

 $FAP = 1 - \exp(-R \times T)$ 

**R** = cumulative rate of background triggers per template,

above a given threshold, per template,

T = analyzing time for the V1 (less sensitive detector) -

70 ms for V1 80 ms for K1

### Calculation setup : How to transform the triggers, HL $\rightarrow$ HLV or HLK or HLVK

![](_page_38_Figure_1.jpeg)

| 2 Procedure                                                                                                                                                                                                                                                                      | Case 3 : V1, K1 triggers are either random or based on injection parameters                                                                                                                                                                               |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $p_{V1}$ , $p_{K1}$ = random uniform number from 0 to 1.                                                                                                                                                                                                                         | FAP = FAP(SNR) if SNR > Threshold, otherwise $FAP = FAP(Threshold)$                                                                                                                                                                                       |  |  |  |  |
| Case 1 : V1, K1 triggers are random                                                                                                                                                                                                                                              | • $p_{V1} < FAP_{V1}$ and $p_{K1} < FAP_{K1}$ $\Rightarrow$ HL + V <sub>random</sub> + K <sub>random</sub><br>• $p_{V1} < FAP_{V1}$ and,<br>$p_{K1} > FAP_{K1}$ and $SNR_{K1} > Threshold_{K1}$ $\Rightarrow$ HL + V <sub>random</sub> + K <sub>inj</sub> |  |  |  |  |
| $HL + V_{random} + K_{random}$                                                                                                                                                                                                                                                   | <ul> <li>p<sub>V1</sub> &gt; FAP<sub>V1</sub> and SNR<sub>V1</sub> &gt; Threshold<sub>V1</sub> and</li> </ul>                                                                                                                                             |  |  |  |  |
| Case 1 var : V1, K1 triggers are random                                                                                                                                                                                                                                          | $p_{K1} < FAP_{K1}$ $\Rightarrow$ HL + V <sub>inj</sub> + K <sub>random</sub><br>• $p_{V1} > FAP_{V1}$ and SNR <sub>V1</sub> > Threshold <sub>V1</sub> and                                                                                                |  |  |  |  |
| $p_{V1} < FAP_{V1}$ and $p_{K1} < FAP_{K1} \Rightarrow HL + V_{random} + K_{random}$                                                                                                                                                                                             | $p_{K1} > FAP_{K1}$ and $SNR_{K1} > Threshold_{K1} \Rightarrow HL + V_{inj} + K_{inj}$<br>• $p_{V1} < FAP_{V1}$ and                                                                                                                                       |  |  |  |  |
| $p_{V1} > FAP_{V1}$ and $p_{K1} < FAP_{K1} \Rightarrow HL + K_{random}$<br>$p_{V1} < FAP_{V1}$ and $p_{K1} > FAP_{K1} \Rightarrow HL + V_{random} +$                                                                                                                             | $p_{K1} > FAP_{K1}$ and $SNR_{K1} < Threshold_{K1} \Rightarrow HL + V_{random} + p_{V1} > FAP_{V1}$ and $SNR_{V1} < Threshold_{V1}$ and                                                                                                                   |  |  |  |  |
| $p_{V1} > FAP_{V1}$ and $p_{K1} > FAP_{K1} \Rightarrow HL + +$                                                                                                                                                                                                                   | $p_{K1} < FAP_{K1} \Rightarrow HL + K_{random}$<br>$\Rightarrow p_{V1} > FAP_{V1}$ and $SNR_{V1} > Threshold_{V1}$ and                                                                                                                                    |  |  |  |  |
| Case 2 : VI, KI triggers are based on injection parameters <b>Best case</b>                                                                                                                                                                                                      | $p_{K1} > FAP_{K1}$ and $SNR_{K1} < Threshold_{K1} \Rightarrow HL + V_{inj} +$                                                                                                                                                                            |  |  |  |  |
| $SNR_{V1} > Threshold_{V1}$ and $SNR_{K1} > Threshold_{K1} \Rightarrow HL + V_{inj} + K_{inj}$<br>$SNR_{V1} < Threshold_{V1}$ and $SNR_{K1} > Threshold_{K1} \Rightarrow HL + K_{inj}$<br>$SNR_{V1} > Threshold_{V1}$ and $SNR_{K1} < Threshold_{K1} \Rightarrow HL + V_{inj} +$ | • $p_{V1} > FAP_{V1}$ and $SNR_{V1} < Threshold_{V1}$ and<br>$p_{K1} > FAP_{K1}$ and $SNR_{K1} > Threshold_{K1} \Rightarrow HL + K_{inj}$<br>• $p_{V1} > FAP_{V1}$ and $SNR_{V1} < Threshold_{V1}$ and                                                    |  |  |  |  |
| $SNR_{V1} < Threshold_{V1}$ and $SNR_{K1} < Threshold_{K1} \Rightarrow HL + +$                                                                                                                                                                                                   | $p_{K1} > FAP_{K1}$ and $SNR_{K1} < Threshold_{K1} \Rightarrow HL + +$                                                                                                                                                                                    |  |  |  |  |

![](_page_38_Picture_3.jpeg)

# **Optimization of V1, K1 threshold :**

Offset angle

Now calculation of HLVK is ongoing..

1.2

1.0

Median ratio 9.0 8

0.4

0.2

0.0 0

Maximum probability Searched area Worst Best **More realistic** 0.4 case 1 var.

**Offset angle** 

(Uncertainties of the red points are to be investigated.)

![](_page_39_Figure_4.jpeg)

40

12

Searched

area

**Injection position** 

# **Optimization of V1, K1 threshold : Offset angle**

Now calculation of HLVK is ongoing..

Case2 = "Best" case

![](_page_40_Figure_3.jpeg)

Searched

area

Maximum

probability

**Injection position** 

**Offset angle** 

Case3 = "More realistic" case

# **Optimization of V1, K1 threshold : Searched area**

Now calculation of HLVK is ongoing..

Injection position Searched arched area Offset angle Maximum Case3 = "More realistic" case

#### Case2 = "Best" case

![](_page_41_Figure_4.jpeg)

42

# Next step (ongoing)

- 1. To get more realistic results,
  - simulate the localization performances with changing the added timing uncertainties.
- 2. Continue the calculation about the hierarchical search with 4 detectors HLVK

...

![](_page_43_Picture_0.jpeg)

**Tools which I learned : Vega** 

vega : plotting tool based on ROOT.

Mainly (in my case)

\* Plot histograms, such as SNR distribution.

\* Fit

# \* Edit MBTA output files (.gwf), or Bayestar input files (.xml)

![](_page_44_Figure_6.jpeg)

Tools which I learned : Bayestar

### **Bayestar : mainly**

# bayestar\_localize\_coinc :

\* Generate files to plot skymaps ( this process needs long time : ~ one night )

# bayestar\_aggregate\_found\_injections :

\* Generate files to plot offsets angles, searched area, 90 % confidence area ,,,

# bayestar\_plot\_allsky :

# \* Generate skymaps

| olserver59[~]: bayestar_            |                                       |
|-------------------------------------|---------------------------------------|
| bayestar_aggregate_found_injections | bayestar_plot_found_injections        |
| bayestar_bin_samples                | bayestar_plot_pileup                  |
| bayestar_lattice_tmpltbank          | bayestar_prune_neighborhood_tmpltbank |
| bayestar_littlehope                 | bayestar_realize_coincs               |
| bayestar_localize_coincs            | bayestar_sample_model_psd             |
| bayestar_localize_lvalert           | bayestar_sim_to_tmpltbank             |
| bayestar_plot_allsky                |                                       |
| olserver59[~]: bavestar             |                                       |

Bayestar has more functions. what I'm using is only these ones.

\* Except for them, I'm using "ligolw", some python codes etc.

### Definitions of the offset angle and the searched area :

- 1. Offset angle
- 2. Searched area

![](_page_46_Picture_3.jpeg)

How far the localization is from the true injected position

Certain confidence area
 ( ex. 90 % confidence area )

How spread or concentrated each probability is

![](_page_46_Figure_7.jpeg)

# **Optimization of Virgo threshold :**

# Is the optimal threshold still valid for the noisy case?

SNR distribution

rate [evt/hour/template]

trigger

![](_page_47_Figure_3.jpeg)

#### **False Alarm Probability**

#### Update the sky localization performance in the case 3 : Summary of sky localization performance

![](_page_48_Figure_1.jpeg)

#### HLVr = HL + Vrandom HLVi = HL + Vinjection

![](_page_48_Figure_3.jpeg)

![](_page_48_Figure_4.jpeg)

Update the sky localization performance in the case 3 : Summary of sky localization performance HLVr = HL + Vrandom HLVi = HL + Vinjection

![](_page_49_Figure_2.jpeg)

#### Start to generate skymaps with 4 detectors (one-template search)

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

![](_page_50_Figure_3.jpeg)

#### Start to generate skymaps with 4 detectors (one-template search)

![](_page_51_Figure_1.jpeg)

![](_page_51_Figure_2.jpeg)

#### Vr = Vrandom Vi = Vinjection

Trigger population seems to be strange...

#### \* Start to generate skymaps with 4 detector

![](_page_52_Figure_1.jpeg)

 $\Delta T_{HK} \equiv 30 \text{ msec}$ 

- $\Delta T_{LK} \equiv 40 \text{ msec}$
- $T \equiv 80 \text{ msec}$

(T is Time window for searching K1 trigger)

- $\Delta T_{HV} \equiv 35 \text{ msec}$
- $\Delta T_{LV} \equiv 35 \text{ msec}$
- $T \equiv 70 \text{ msec}$

(Time window for searching v1 trigger)

### HL $\rightarrow$ HL or HLV or HLK or HLVK

| 1.1 Genetaing random triggers : $V_{random}$ , $K_{random}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • $SNR = Raodom$ above a threshold SNR, following measured O1 SNR distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • Time = $t_0 + \Delta t$<br>• $t_0 = t_{H1}$ if SNR <sub>H1</sub> > SNR <sub>L1</sub> , otherwise $t_0 = t_{L1}$<br>• $\Delta t$ = random uniform number:<br>from -35 ms to 35 ms, for V1.<br>from ms to ms, for K1.                                                                                                                                                                                                                                                                                                                                                                                                  |
| • Phase = random uniform number from 0 rad to $2\pi$ rad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Effective distance $D_{\rm eff} = 2.26 \times \text{detection range} \times 8 / \text{SNR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.2 Generating triggers based on injection parameters : $V_{inj}$ , $K_{inj}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • SNR = SNR <sup>expected</sup> + $\Delta$ SNR<br>• SNR <sup>expected</sup> = 2.26 × detection range × 8 / $D_{\text{eff}}$<br>• $\Delta$ SNR = random Gaussian(0, 1).<br>• $D_{\text{eff}}$ = injection meta data<br>• detection range for V1 = 54 Mpc × 20 Mpc / 70 Mpc<br>• detection range for K1 = 54 Mpc × 20 Mpc / 70 Mpc                                                                                                                                                                                                                                                                                       |
| • Time = $t^{\text{expected}} + \Delta t$<br>• $t^{\text{expected}}$ = injection meta data<br>• $\Delta t$ = random Gaussian(0,1 ms).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • Phase = $\phi_0 + \Delta \phi$<br>• $\phi_0 = \phi_{H1} - \Delta \phi_{HV}^{expected}$ if SNR <sub>H1</sub> > SNR <sub>L1</sub> , otherwise $\phi_0 = \phi_{L1} - \Delta \phi_{LV}^{expected}$ , for V1<br>• $\phi_0 = \phi_{H1} - \Delta \phi_{HK}^{expected}$ if SNR <sub>H1</sub> > SNR <sub>L1</sub> , otherwise $\phi_0 = \phi_{L1} - \Delta \phi_{LK}^{expected}$ , for K1<br>$\phi_{H1}, \phi_{L1} =$ injection metadata<br>$\Delta \phi_{HV}^{expected}, \Delta \phi_{HK}^{expected}, \Delta \phi_{LK}^{expected}$ are generated from injection metadata.<br>• $\Delta \phi =$ random Gaussian(0, 0.25 rad). |
| Note that the Gaussian( $\mu$ , $\sigma$ ) corresponds to this function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Gaussian
$$(\mu, \sigma) \equiv \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

| 2 Procedure                                                                         |        |                                   |                    |                    |  |  |
|-------------------------------------------------------------------------------------|--------|-----------------------------------|--------------------|--------------------|--|--|
| $p_{V1}, p_{K1} =$ random uniform number from 0 to 1.                               |        |                                   |                    |                    |  |  |
| Case 1 : V1, K1 triggers are random                                                 |        |                                   |                    |                    |  |  |
| $HL + V_{random} + K_{random}$                                                      |        |                                   |                    | (2)                |  |  |
| Case 1 var : V1, K1 triggers are random                                             |        |                                   |                    |                    |  |  |
| $p_{V1} < FAP_{V1}$ and $p_{K1} < FAP_{K1} \Rightarrow HL + V_{ra}$                 | ndom   | + K <sub>random</sub>             |                    | (3)                |  |  |
| $p_{V1} > FAP_{V1}$ and $p_{K1} < FAP_{K1} \Rightarrow HL +$                        |        | + K <sub>random</sub>             |                    | (4)                |  |  |
| $p_{V1} < FAP_{V1}$ and $p_{K1} > FAP_{K1} \Rightarrow HL + V_{ra}$                 | ndom   | +                                 |                    | (5)                |  |  |
| $p_{V1} > FAP_{V1}$ and $p_{K1} > FAP_{K1} \Rightarrow HL +$                        |        | +                                 |                    | (6)                |  |  |
| Case 2 : V1, K1 triggers are based on injection parameters                          |        |                                   |                    |                    |  |  |
| $SNB_{V1} > Thresholdy_1$ and $SNB_{K1} > Threshold_{K1}$                           | ⇒      | HL + Vini +                       | Kini               | (7)                |  |  |
| $SNR_{V,1} \leq Thresholdy_1$ and $SNR_{K,1} \geq Threshold_{K,1}$                  | ,<br>⇒ | HL + +                            | Kini               | (8)                |  |  |
| $SNR_{V1} > Threshold_{V1}$ and $SNR_{K1} < Threshold_{K1}$                         | ⇒      | HL + Vini +                       | - mj               | (9)                |  |  |
| $SNR_{V1} \leq Threshold_{V1}$ and $SNR_{V1} \leq Threshold_{V1}$                   | ,<br>⇒ | HL + +                            |                    | (10)               |  |  |
|                                                                                     |        |                                   |                    | ()                 |  |  |
| Case 3 : V1, K1 triggers are either random or based o                               | n in   | jection parame                    | ters               |                    |  |  |
| FAP = FAP(SNR) if SNR > Threshold, otherwise $FAP = F$                              | AP(    | Threshold)                        |                    |                    |  |  |
| • $\pi \mu i < FAP \mu i$ and $\pi \mu i < FAP \mu i$                               | ->     | HI. + Varatar                     | + Keeder           | (11)               |  |  |
| • $p_{VI} < FAP_{VI}$ and $p_{KI} < FAF_{KI}$                                       | 7      | III. + Viandom                    | + Israndom         | (11)               |  |  |
| $p_{V1} > FAP_{V1}$ and $SNB_{V1} > Thresholder$                                    | -      | $HL + V_{-1}$                     | + K                | (12)               |  |  |
| • $p_{K1} > FAP_{K1}$ and $SNR_{K1} > Thresholdy_{k1}$ and                          | 7      | random                            | 1 Isinj            | (12)               |  |  |
| $p_{V1} \leq FAP_{V1}$ and $Stat_{V1} \geq Intested V_1$ and $p_{V1} \leq FAP_{V1}$ | ⇒      | $HL + V_{i-1}$                    | + Kanadara         | (13)               |  |  |
| • $p_{V1} > FAP_{V1}$ and $SNR_{V1} > Thresholdy_1$ and                             |        | ···· inj                          | random             | (10)               |  |  |
| $p_{V1} > FAP_{V1}$ and $SNR_{V1} > Threshold_{V1}$                                 | ⇒      | HL + Vini                         | + K::              | (14)               |  |  |
| • $\pi_{K1} < FAP_{V1}$ and                                                         |        | · · · · · · · · · · · · · · · · · | i inj              | ()                 |  |  |
| $p_{K1} > FAP_{K1}$ and $SNB_{K1} < Threshold K1$                                   | ⇒      | HL + Vrandom                      | +                  | (15)               |  |  |
| • $p_{V1} > FAP_{V1}$ and $SNR_{V1} < Thresholdy_1$ and                             |        |                                   |                    | (10)               |  |  |
| $p_{V1} \leq FAP_{V1}$                                                              | ⇒      | HL +                              | + Krandom          | (16)               |  |  |
| • $p_{V1} > FAP_{V1}$ and $SNR_{V1} > Threshold_{V1}$ and                           |        |                                   | 1 - Tandom         | ()                 |  |  |
| $p_{K1} > FAP_{K1}$ and $SNR_{K1} < Threshold_{K1}$                                 | ⇒      | HL + Vini                         | +                  | (17)               |  |  |
| • $p_{V1} > FAP_{V1}$ and $SNR_{V1} < Threshold_{V1}$ and                           |        |                                   |                    |                    |  |  |
| $p_{K1} > FAP_{K1}$ and $SNR_{K1} > Threshold_{K1}$                                 | ⇒      | HL +                              | + K <sub>ini</sub> | (18)               |  |  |
| • $p_{V1} > FAP_{V1}$ and $SNR_{V1} < Thresholdy_1$ and                             |        |                                   |                    |                    |  |  |
| $p_{K1} > FAP_{K1}$ and $SNR_{K1} < Threshold_{K1}$                                 | ⇒      | HL +                              | +                  | (1 <del>2)</del> л |  |  |
| -                                                                                   |        |                                   |                    | 54                 |  |  |

\* Start to generate skymaps with 4 detector (V1, K1 threshold = 3.5)

![](_page_54_Figure_1.jpeg)

![](_page_54_Figure_2.jpeg)

\* Investigate the SNR distribution at low SNR distribution

![](_page_55_Figure_1.jpeg)

At low SNR, if collecting time gets shorter,

1) the saturation gets better, and 2) curves get close to red line( extrapolated one )

At High SNR, there are mostly no differences  $\rightarrow$  distributions don't depend on how to analyze, and templates.

\* Investigate relation between the P-P plot and timing fluctuation \* (Arriving time) = (meta data) + (Gaussian)

Gaussian  $\sigma_{\text{Time}} = 1 \text{ ms}$  (Const.)  $\rightarrow \sigma_{\text{Time}} = Time \text{ or } Time \times \frac{6}{\text{SNR}}$ 

![](_page_56_Figure_2.jpeg)