Interferometer Design for bKAGRA Phase 1 and Beyond

Yuta Michimura

Department of Physics, University of Tokyo
for the MIF subgroup

bKAGRA Phase 1 (-2018.3)

- Goal:
- Start observation run using 3km cryogenic interferometer by the end of March 2018
- TM temperature should be (close to) 20 K
- No requirement for sensitivity
- Configuration:
- 3 km cryogenic Michelson
- minimum success: cryo Michelson with LSC
- strict deadline (KAGRA will die if cannot make it)
- concentrate on Michelson first
(no power recycling before Michelson operation)
- Purpose:
- Test cryopayload and cryogenic operation

bKAGRA 2018.4-6

- Interferometer team will have time after Phase 1 until ITM cryopayload installation, which starts on July 2, 2018
- Configuration:
- 3 km cryogenic power-recycled Michelson
- no strict deadline, but we have to finish it before ITM installation starts (try PRMI if it doesn't delay the final bKAGRA)
- Purpose:
- Test cryopayload and cryogenic operation
- Try 3-km cavity locking, multi-DOF locking
- Spatial mode check

Steps for Cryogenic MI and PRMI

- 2017.7.6 PRs installed
- Initial alignment to both ends, beam collimation (no PR2-PR3 length tuning if beam is collimated well enough)
- 2017.11.1 ETMY CRYp installed
- Return the beam from ETMY to BS (we don't try PR-ETMY cavity)
- 2017.11.21 ETMY cool down starts
- 2018.2.2 ETMX CRYp installed
- Return the beam from ETMX to BS
- Lock room temperature Michelson
- 2018.2.19 ETMY cool down starts
- by 2018.3.31 Start observation run with 3-km cryogenic Michelson
[AFTER WE MEET THE DEADLINE]
- Shorten PR2-PR3 length by 2.4 cm (at max)
- Re-alignment
- Lock cryogenic PRMI
if not possible, lock more cryogenic Michelson
* PRMI could be unstable if PR2/3 RoC errors are the worst case

Configuration

- Every detection port listed here has both PD and QPDs (for ASC), and placed on output optics tables in air
- Green lasers are also installed (but not necessary for Phase 1)
- No requirement for vacuum level
invac fixed BRT (could be on isolated table; GPT is on output optics table in air)

Layout

- Adjust layout slightly to compensate ITM wedge
- Move PR2 and PR3 to stabilize mode of PR cavity (after Michelson operation)
- see JGW-G1605199 for more detail
move PR2 by 1.2 cm

BS angle slightly changed (by 0.0187 deg)
beam spot on PR3 5mm off the center in $-Y$ direction

Length Sensing and Control

- Only use f1 sidebands
- Sensing matrix for PRMI:
[W/m]
MICH
REFL_I +9.92e-01
REFL_Q
$+6.61 e+04$
$+8.97 e+02$
AS_Q
$-1.67 e+06$
-2.23e-01
PRCL
$-7.48 e+07$
$-3.52 e+07$
$+4.16 e+02$

Alignment Sensing and Control

- Only use f1 sidebands (and TRX/Y DC)
- Sensing matrix for PRMI:

[W/rad]	COMM	DIFF	BS	PRM	PR2'	PR3'
REFLA_I	$+4.98 e+02$	$+2.36 e-01$	$-4.16 e+02$	$-8.13 e+01$	$-2.08 e-01$	$-1.21 e+03$
REFLB_I	$-7.01 e-01$	$-2.91 e+00$	$-1.93 e+00$	$-2.10 e+01$	$-1.70 e-03$	$+3.47 e+00$
ASA_Q	$+9.80 e-01$	$+1.87 e+02$	$+1.56 e+02$	$-1.39 e-01$	$+1.31 e-03$	$-2.27 e+00$
POPA_DC $+4.04 e+01$	$+1.49 e+01$	$-2.41 e+01$	$+3.91 e+02$	$+8.07 e+02$	$-1.57 e+01$	
TRXA_DC $+2.30 e+01$	$+1.71 e-01$	$+1.93 e+01$	$-1.23 e-01$	$-5.66 e-03$	$-6.51 e-01$	
TRYA_DC $-2.30 e+01$	$+1.71 e-01$	$-1.91 e+01$	$-1.17 e-01$	$-3.25 e-03$	$-6.36 e-01$	

- See JGW-G1605541 and JGW-T1605362 for more detail

Transverse Mode Spacing for PRMI

- g-factor
0.8750 in pitch 0.8958 in yaw (with designed RoCs \& lengths, PR2-PR3 length shortened by 2.4 cm)
- See JGW-G1605541 JGW-T1605362 for more detail
- how to measure: LIGO-G080467

