Interferometer Design for bKAGRA Phase 1

Yuta Michimura

Department of Physics, University of Tokyo

for the MIF subgroup

bKAGRA Phase 1

Goal:

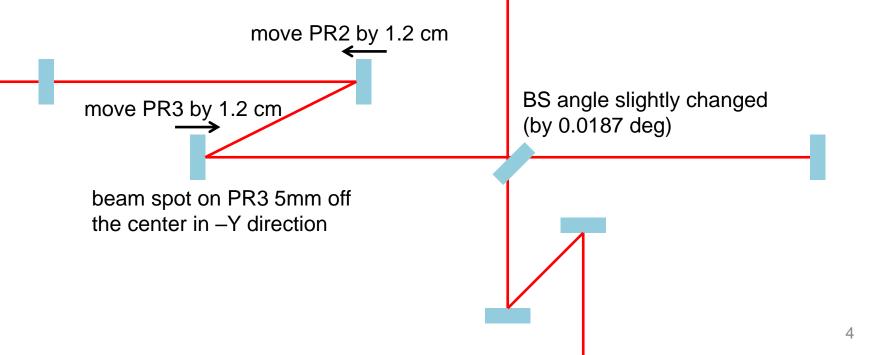
- Start observation run using 3km cryogenic interferometer by the end of March 2018
 - TM temperature should be (close to) 20 K
 - No requirement for sensitivity

Configuration:

- 3 km (power-recycled) Michelson
- minimum success: Michelson with LSC
- extra success: PRMI with ASC
- so, we prepare for PRMI with ASC

Purpose:

- Test cryopayload and cryogenic operation


Configuration

Every detection port listed here has both PD and QPDs (for ASC), and placed on output optics tables in air invac fixed BRT (could be on isolated table; Green lasers are also installed GPT is on output optics table in air) (but not necessary for Phase 1) No requirement for vacuum level **TRY** IMC: Type-C ETMs: Type-A + ~20 K CRYp with WFS (CRYp not final ones) POP PRM misaligned if we give up PRMI IMMT: Type-C **TRX PSL IMMT1T** 2 W BS, SRs: Type-B final PMC PRs: Type-Bp **REFL** invac fixed BRT high power EOM fIMC = 13.78 MHzf1 = 16.88 MHzfrequency stabilized with RefCav/IMC/(PRCL) invac fixed STM

intensity stabilized with PMCT and IMMT1T

Layout

- Adjust layout slightly to compensate ITM wedge
- Move PR2 and PR3 to stabilize mode of PR cavity
- see <u>JGW-G1605199</u>
 for more detail

Length Sensing and Control

- Only use f1 sidebands
- Sensing matrix:

[W/m]	MICH	PRCL
REFL_I	+9.92e-01	-7.48e+07
REFL_Q	+6.61e+04	-3.52e+07
AS_I	+8.97e+02	-2.23e-01
AS Q	-1.67e+06	+4.16e+02

Alignment Sensing and Control

- Only use f1 sidebands (and TRX/Y DC)
- Sensing matrix:

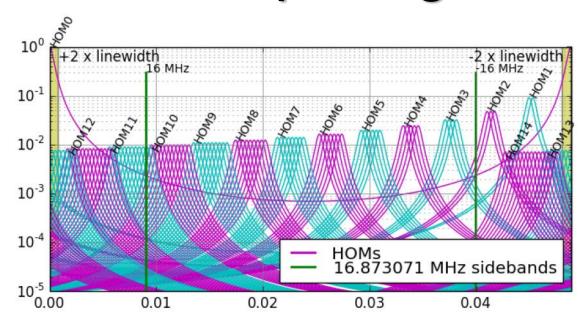
```
[W/rad] COMM DIFF BS PRM PR2' PR3'

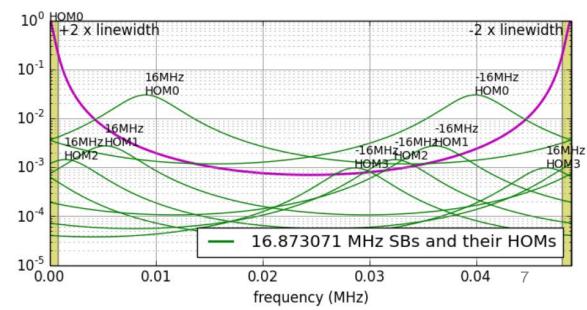
REFLA_I +4.98e+02 +2.36e-01 -4.16e+02 -8.13e+01 -2.08e-01 -1.21e+03

REFLB_I -7.01e-01 -2.91e+00 -1.93e+00 -2.10e+01 -1.70e-03 +3.47e+00

ASA_Q +9.80e-01 +1.87e+02 +1.56e+02 -1.39e-01 +1.31e-03 -2.27e+00

POPA_DC +4.04e+01 +1.49e+01 -2.41e+01 +3.91e+02 +8.07e+02 -1.57e+01


TRXA_DC +2.30e+01 +1.71e-01 +1.93e+01 -1.23e-01 -5.66e-03 -6.51e-01


TRYA_DC -2.30e+01 +1.71e-01 -1.91e+01 -1.17e-01 -3.25e-03 -6.36e-01
```

 See <u>JGW-G1605541</u> and <u>JGW-T1605362</u> for more detail

Transverse Mode Spacing

- g-factor
 0.8750 in pitch
 0.8958 in yaw
 (with designed
 RoCs & lengths,
 PR2-PR3 length
 shortened by
 2.4 cm)
- See
 <u>JGW-G1605541</u>
 <u>JGW-T1605362</u>
 for more detail

PRMI or MI

- PRMI could be unstable even if PR2-PR3 length is tuned, if combination of PR2/PR3 RoC errors is the worst case
- We don't have much time for TMS tuning
- Thus, we might have to give up PRMI Give up PRMI as a configuration for the end of March 2018 unstable unstable mode lock stable stable Try adjust Measure beam profile, Shorten PR2-PR3 mode. mode **PRMI** PR2-PR3 Try PR-ETMY cavity by 2.4 cm (max) LSC if possible stable **ETMY** ETMX lock cryopayload cryopayload installed installed Go with PRMI-