Status Report of Type-A SAS

Koki OKUTOMI Sokendai D2, NAOJ KAGRA VIS Subgroup

KAGRA F2F Meeting @ University of Toyama Aug. 25, 2016

Type-A Team

Members:

- TAKAHASHI, Ryutaro (Leader)
- ISHIZAKI, Hideharu
- SATO, Naohisa
- OKUTOMI, Koki

Team Meeting: 13:00- on every Tuesday

- About Type-A SAS
- Mode analysis and control strategy
- Installation

- Largest SAS for test masses
- Cryopayload at the bottom
- Suspended from 2nd floor

Requirements for Type-A

		Value	Unit	Required from
PSD	Longitudinal	1 x 10 ⁻¹⁹	m/Hz ^{1/2} @ 10 Hz	Sensitivity
	Vertical	1 x 10 ⁻¹⁷	m/Hz ^{1/2} @ 10 Hz	Sensitivity
RMS	Pitch, Yaw	0.01	urad	
	Velocity	0.1	um/sec	Lock acquisition
	Angular velocity	0.01	rad/sec	Alignment (w/ WFS)
Long term drift	Longitudinal	???	m/hour	Actuator range
	Pitch, Yaw	0.4	urad/hour	
Damping time (for all modes)		60	sec	Set typically?

Performance in Design

T. Sekiguchi Ph.D. Thesis, p.72: JGW-P1504155-v15

Components of Type-A

- Preisolator • Top stage (F0)
 - Magnetic damper (MD)
 - Standard filter (SF) x3
 - Bottom filter (BF)
 - Platform (PF)
 - Marionette (Mar)
 - Intermediate mass (IM)
 - Test mass (TM)
 - CRY subgroup's talk (Aug. 26)

Sensors, Actuators and Motors

- Top stage (F0)
 LVDT (L, T, Y)

 - Accelerometer (L, T, Y)
 - Stepper motor (L, T, Y)
 - Picomotor (Y)
 - Fishing rod (V)
- GAS filter (F0, SF1-3, BF)
 - LVDT (V)
 - Fishing rod (V)

Earthquake Stop – Security Frame

- Structure for safety
- Fixed to the wall of vacuum chambers

Mode Analysis & Control Strategy

Mode Analysis

- To make damping control strategy of the modes in room temperature parts of Type-A
- Calculation based on
 - SUMCON
 - MATLAB

SAT team in Adv. Virgo suggested that...

- Lowest-frequency modes come from whole chain of the suspension is difficult to be damped with top-stage controls in Virgo Superattenuator
- Same problem could rise in KAGRA, especially Type-A which has as long suspended chain as the Superattenuator
- If so, we should implement another controllers at some lower stages
- We need to make a damping strategy

Lowest Eigenmodes in Type-A

#1:0.02 Hz Yaw whole chain 0th #2:0.054 Hz Yaw whole chain 1st #3: 0.067 Hz IP horizontal #4: 0.067 Hz IP horizontal #5: 0.082 Hz Yaw whole chain 2nd #6: 0.101 Hz Yaw whole chain 3rd

Open-loop Transfer Function (LF0)

MATLAB

Open-loop Transfer Function (YF0)

15

MATLAB

Damping Strategy

Translational modes

• It seems that the lower frequency modes could be damped only with F0 control

Yaw modes

- The lowest resonance in yaw (whole chain 0th) is difficult to be damped with F0 control
- Add controls on the Bottom Filter (BF) and check possibility to damp the lowest modes

Open-loop Transfer Function (YBF)

Damping Time (F0 + BF Control)

Section Summary: Mode Analysis

Translational modes

- F0 control is capable enough to damp the translational modes
 Yaw modes
- The lowest whole-chain mode can be damped with BF control

F0 + BF control

• Every modes can be quickly damped with this control

Next step

- Estimation of required sensor/actuator's performance
- Analysis of the suspension model including CRYp

BF LVDT

- Under design work, based on Adv. Virgo F7 LVDT
- Tested with our driver circuit

Configuration of BF LVDT

Installation

Installation Schedule

After installations of Type-A room-temperature parts, Cryopayloads are integrated

Dummy Payload

Installation Plan

Installation Plan

Installation Plan

Problems in Installation

Cross-tube flange

- We have to install stages one by one
- Optimal load adjustment
 required in each stage
 - All masses below the stage have to be released
- Parts in the vertical corrugated tube are not accessible
 - We have to know the stages sitting?/freely-suspended?

Release Sensor

- To confirm the stages are released from EQ-stops and freely-suspended
- 3 units / stage
- LED indications during the installation work
- Filters sit on these sensors when we lower by one stage

* Filters not locked either horizontal nor vertical direction

Points to Be Considered

- Footholds
- Perpendicularity of EQ-stop rods
- Required accuracy of assembling
- Position adjustment of magnetic damper
- Uninstallation procedure for emergency
- Longest maraging wire keeping
- Vacuum leakage test

Summary

About Type-A SAS

 In bKAGRA operation by the end of 2018, 2 Type-A SAS will be installed

Mode analysis and control strategy

- We need BF controls to damp lowest yaw modes
- BF LVDT design and test is ongoing
- Next step => Analysis of suspension models including CRYp

Installation

- Installation procedure is under updating
- Unaccessibility of the vertical corrugated tube makes the installation work more challenging

Backup Slides

Closed-loop Gain (LF0 act.)

37

Closed-loop Gain (YF0 act.)

Closed-loop Gain (YBF act.)

