14th KAGRA F2F (University of Toyama)

Summary of the iKAGRA Run

Yuta Michimura

Department of Physics, University of Tokyo

based on <u>JGW-T1605101</u>, <u>JGW-T165177</u> by Y. Michimura <u>JGW-G1605294</u> by S. Kawamura <u>JGW-G1605296</u> by K. Kokeyama

iKAGRA Test Run

- Period
 - 1st run: Mar 25 9:00 Mar 31 17:00 (JST)
 - commissioning break sensitivity and stability improvement
 - 2nd run: Apr 11 9:00 Apr 25 17:00 (JST)
- Purpose
 - confirm the layout of the vacuum tanks
 - test control system, data acquisition/transfer/ management, observation shift
 - get environmental data
 - obtain experiences of the management and operation of the km-class interferometer

Configuration

 3-km Michelson interferometer (instead of Fabry-Perot Michelson)

Simplified Suspensions

 most of the suspensions were simplified/replaced to meet the deadline

Vacuum

Environmental Sensors

for noise hunting and Newtonian noise estimation

Controls and Readout

• reflection port for sensing, ETMs for actuation

Calibration

-2000

- optical gain calibration using fringes
- actuator calibration by transfer function measurements
- calibration lines to monitor TF drift

Sensitivity

- limited by seismic noise below ~4 Hz, acoustic/fan noise at around 100 Hz, ADC noise above ~3 kHz
- ~3e-15 /rtHz
 @ 100 Hz
- ~ 4.2 pc for 1.4M-1.4M NS-NS (0.77 pc for 1st run)

Duty Factor and Longest Lock

- 1st run: 85.2 %, 3.6 hours (94.4 %, 12 hours for IMC)
- 2nd run: 90.4 %, 21.3 hours (98.5 %, 23.5 hours for IMC)

Data Management

- real time transfer to ICRR Kashiwa and Osaka City Univ.
 - (~3 sec latency,~ 200 MB/sec)
- delayed mirroring at Academia SINICA, Taiwan and KISTI, Daejeon
- 7.5 TB in total

Hardware Injection

- right after 2nd iKAGRA run
- gravitational waveforms of CBC, Supernovae, etc.
- important end-to-end test

Good Findings

- The beam went back and forth the 3-km X/Y arms
- Acquired tidal and environmental sensors data
- Type-Bp' was stable enough for 3-km Michelson
- Controlled the ETMs via 3-km RFM network
- Observation shift worked well without big trouble
- Data management also worked very well
- Many people enjoyed the integration, commissioning, and operation of the large scale interferometer (with some struggle)

Environmental Data

Lessons Learned

- Simple mistakes could happen
- Careful preparation and planning is important
- Careful instrumentation is also important (no more loose cables and screws/bolts)
- Lack of documents / drawings and communication caused troubles
- More effort on safety needed
- → extended chief meetings schedule tracking better infrastructure to share drawings safety review

After the Run

- post-run calibration, transfer function, ADC/DAC and RFM time delay measurements
- saved and summarized the IFO parameters
- data processing for analysis and detchar
 - data correction
 - offline calibration
 - Newtonian noise estimation etc... still work in progress
- publication plan?

Summary

- iKAGRA Run was successful
- We had a lot of downgrades to meet the deadline
- Acquired useful data for bKAGRA
- Obtained precious lessons for bKAGRA
- Data processing and characterization still on going