bKAGRA phase1の PRMI とその ASC について

JGW-T1605362-v1 榎本 雄太郎

2016年7月10日

1 はじめに

bKAGRA phase1 と呼ばれる phase では、power-recycled Michelson interferometer (PRMI) を運転する予定である。そこで、本文書では power recycling cavity の安定性や 最適な Gouy 位相を実現するための PR 系鏡の位置、またその場合における PRMI を構 成する鏡の alignment sensing について述べる。

2 PRMI の安定性と PR2/3 の位置

麻生さんの資料 [1] で議論されているように、PRFPMI のときと同じ位置に鏡を置き 単に ITMX/Y を取り除いただけでは PRMI は不安定共振器になってしまう。これは、 ITM を取り除くと ITM の基材によるレンズ効果がなくなるからである。ところで、同資 料における安定性の議論は ABCD 行列を用いて行われており、特に多数 (> 2) の鏡から なる共振器の安定性の議論には ABCD 行列が有用である [2]。

同資料では、PR2 と PR3 をそれぞれ 1 cm ずつお互いに近づければ PRMI を安定共 振器にすることができることが示されている。また、道村さんの計算によると round trip Gouy phase ζ_{tot} が

$$\cos\zeta_{\rm tot} = 0.89\tag{1}$$

であるのが望ましいことがわかった (図 1)。そこで、いくつかの PR2/3 の移動距離を試 して ABCD 行列を計算したところ、PR2 と PR3 を 1.18 cm ずつ近づけると

$$\cos\zeta_{\rm tot,PIT} = 0.8802,\tag{2}$$

$$\cos\zeta_{\rm tot, YAW} = 0.9009\tag{3}$$

図 1 $\cos \zeta_{\text{tot}} = 0.8906$ の場合の HOM と RF サイドバンドの構造。Plot by 道村さん。

を得ることがわかった。参考までに、移動距離がそれぞれ 1.15 cm の場合、

$$\cos\zeta_{\rm tot,PIT} = 0.8881,\tag{4}$$

$$\cos\zeta_{\rm tot,YAW} = 0.9084\tag{5}$$

1.20 cm の場合、

$$\cos\zeta_{\rm tot,PIT} = 0.8750,\tag{6}$$

$$\cos\zeta_{\rm tot, YAW} = 0.8958\tag{7}$$

である。まとめると、PRMI が安定共振器であり、RF サイドバンドの HOM がキャリア の基本モードの共振と重ならないためには、PR2 と PR3 をそれぞれ 1.18 cm ずつ近づけ ればよい (PR2-PR3 の距離は 2.36 cm 縮む)。

3 PRMI **Ø** ASC

次に、PRMIの alignment sensing について議論する。alignmentの信号を取得す ることができるのは、図 2 に示されているような 5 つのポートである。PRMI を 構成する 6 つの鏡、ETMX/Y, BS, PRM/2/3 の alignment 信号をこの 5 つのポー トからなるべく分離良く取得する方法についてのシミュレーションを Optickle2 を 用いて行った。現在までに得られた結果を以下に述べる。使用したパラメータや 実行ファイルは https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT/trunk/mif/ KAGRAOptickle/bKAGRAPhase1/以下にある。

図2

ASC の pitch の Sensing matrix は以下のようになった:

	COMM	DIFF	BS	PRM	PR2'	PR3'
REFLA_I	+5.14e+02	+2.42e-01	-4.29e+02	-8.37e+01	-1.75e-01	-1.25e+03
REFLA_Q	-7.54e-01	-2.05e+00	-1.08e+00	+1.88e-01	+2.42e-04	+1.85e+00
REFLB_I	-8.28e-02	-2.92e+00	-2.44e+00	-2.13e+01	+1.76e-03	-3.69e+00
$\rm REFLB_Q$	$+1.51e{+00}$	-6.80e+00	-6.95e+00	-2.16e-01	-5.77e-04	-3.68e+00
ASA_I	+8.78e-03	$+1.66e{+}00$	+1.38e+00	-1.24e-03	+1.18e-05	-2.03e-02
ASA_Q	+1.00e+00	+1.89e+02	+1.57e+02	-1.41e-01	+1.34e-03	-2.31e+00
ASB_I	-2.41e-03	-1.24e-03	+1.08e-03	+1.32e-04	+2.58e-07	+2.03e-03
ASB_Q	-2.75e-01	-1.41e-01	+1.23e-01	+1.50e-02	+2.94e-05	+2.31e-01
POPA_DC	+4.45e+01	+1.61e+01	-2.64e+01	+3.93e+02	+8.11e+02	-2.67e+01
POPB_DC	+1.02e+04	+8.87e+00	-8.52e + 03	-1.58e+03	-1.06e+02	-2.48e+04
TRXA_DC	-2.38e+01	+1.74e-01	+2.01e+01	-4.13e-02	-1.83e-02	$+1.79e{+00}$
TRXB_DC	$+9.38e{+01}$	+1.32e-01	-7.83e + 01	-1.63e+01	+1.53e-01	-2.66e+02
TRYA_DC	-2.39e+01	+1.74e-01	-1.85e+01	-4.07e-02	-1.85e-02	+1.88e+00
TRYB_DC	+9.37e+01	+1.32e-01	-1.05e+02	-1.63e+01	+1.53e-01	-2.66e+02

表1 ASC sensing matrix (pitch)

ここで、COMM = ETMX + ETMY、DIFF = ETMX – ETMY、PR2' = 0.99 PR2 – 0.122 PR3、 PR3' = 0.122 PR2 + 0.99 PR3 である。DC は QPD の DC 出力、I/Q は QPD の RF 出力を復調した際の I/Q 位相成分である。REFL の I/Q は PRCL の信号が pure に I-phase に現れるような復調位相を用いて、AS の I/Q は MICH の信号が pure に Q-phase に現れるような復調位相を用いてそれぞれ定義した。また、A/B はそれぞれ各 ポートでの直交する Gouy 位相成分の信号を表す。REFL の A/B は REFLB_I に PRM 以外がなるべく現れないように、AS の A/B は DIFF と BS が pure に ASA_Q に現 れるように、POP の A/B は POPA_DC に PR3' が現れないように、TR の A/B は TRXA/TRYA に PR 系の信号が現れないように定義した。PR2' は REFL に現れない ような PR2 と PR3 の線型和として定義され、PR3' は PR2' に"直交"するように定義さ れた。 以上のような基底における信号の取得と分離について、以下の表に簡単にまとめる:

	COMM	DIFF	BS	PRM	PR2'	PR3'
TRCOMMA_DC	0					
ASA_Q		0	0			
TRDIFFA_DC			0			
REFLB_I		$\triangle(14\%)$	$\triangle(12\%)$	0		$\triangle(18\%)$
POPA_DC				$\triangle(48\%)$	0	
REFLA_I	$\triangle(41\%)$		$\triangle(34\%)$			0

表 2 ASC sensing matrix (pitch)の概要

ここで、TRCOMMA_DC = TRXA_DC + TRYA_DC、TRDIFFA_DC = TRXA_DC - TRYA_DC である。この表の見方は次のようである: 各信号 (プローブ) に対し最も大きな寄与 (伝達 関数) をもつ自由度に \odot を記し、最大のものと比較して 10% 以上の寄与でそのプローブ に混合してしまう自由度に \triangle を記している。

表 2 から考えられる信号分離の方法は次のようである。まず TRXA_DC と TRYA_DC の和と差から COMM と BS を取得し、AS_Q から BS の寄与を差し引き DIFF を得る。 次に、REFLB_I, POPA_DC, REFLA_I から COMM, DIFF, BS の寄与を差し引いた上 で、REFLA_I から PR3' を、REFLB_I から PR3' を差し引いて PRM を、POPA_DC から PRM を差し引いて PR2' が得られる。このような考えに基づいて計算した sensing matrix を次に示す。

表 3 ASC sensing matrix (pitch) の荒い対角化

	COMM	DIFF	BS	PRM	PR2'	PR3'
a	-4.77e+01	+3.49e-01	$+1.59e{+00}$	-8.19e-02	-3.67e-02	+3.68e+00
b	+8.64e-01	$+1.89e{+}02$	-7.99e-01	-1.17e-01	+1.12e-03	-1.92e+00
с	+3.31e-02	+7.67 e-05	$+3.86e{+}01$	-5.74e-03	+5.40e-05	-9.40e-02
d	-1.41e-02	+1.31e+00	+1.25e+00	-2.13e+01	+1.76e-03	-3.70e+00
е	$+6.29e{+01}$	+1.41e+01	-4.63e+01	+1.73e+01	+8.21e+02	-3.87e+01
f	-1.17e+01	+3.53e+00	+1.30e+01	-8.38e+01	-6.08e-01	-1.21e+03

ここで、

$\mathbf{a} = \mathbf{TRXA_DC} + \mathbf{TRYA_DC},$	(8)
$\mathbf{b} = \mathbf{ASA}_{-}\mathbf{Q} - 4.1 \times (\mathbf{TRXA}_{-}\mathbf{DC} - \mathbf{TRYA}_{-}\mathbf{DC}),$	(9)
$\mathbf{c} = \mathbf{TRXA_DC} - \mathbf{TRYA_DC},$	(10)
$d = REFLB_{-}I + 0.015 \times ASA_{-}Q,$	(11)
$\mathbf{e} = \mathbf{POPA_DC} - 0.068 \times \mathbf{REFLA_I} - 1.5 \times \mathbf{TRXA_DC},$	(12)
$f = REFLA_I + 22 \times TRXA_DC.$	(13)

4 考察: もっとシンプルにできるか

bKAGRA phase1 の ASC になにが求められていて、また様々な制約の中でどこまでや ることができるかに依存する問題ではあるが、6 自由度のアラインメント信号の取得と分 離はやや複雑すぎるかもしれない。そこでより単純な ASC について以下で考える。

PRMI の共振器、干渉計としてのアラインメントの自由度は、pitch, yaw それぞれにつ き、入射光と PRC の (PRM-PR2 での)mode の一致 (2 自由度) と MI 部分のコントラス ト (1 自由度) の計 3 自由度である。鏡の自由度の立場では、PRC のフロントミラーの角 度と「エンドミラー」の角度、BS を基準としてみたときの ETMX と ETMY の角度の違 いの 3 自由度と表現することもできる。したがって、mode match やコントラストだけを 気にするのであればこの 3 自由度を制御するだけで十分である。具体的には、REFLA.I を PR3 に、REFLB.I を PRM に、ASA_Q を DIFF にフィードバックする、などであ る。つまり、REFL の 2 つの WFS と AS の 1 つの WFS は必要であり、それらの信号が 0 になるようにフィードバックを行えば mode match やコントラストの観点では問題な いということである。

参考文献

- [1] Y. Aso, "bKAGRA phase 1 PRMI feasibility study", (2016): JGW-G1605199.
- [2] K. ARAi, "On the accumulated round-trip Gouy phase shift for a general optical cavity", (2013): LIGO-T1300189-v1.