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Introduction

Gravitational waves are radiated from the motion of matter and propagate

with speed of light in time and space. The existence of gravitational waves are

predicted by General theory of relativity[1]. There is an indirect evidence of

the existence of gravitational waves. Halse and Taylor detected the decrease

of orbital period in the binary pulsar system PSR1913+16, and the measured

decreasing rate is consistent with theoretical calculations of GW radiation[2,

3]. The decrease of orbital period is due to the loss of energy by emitting

gravitational waves.

The Laser Interferometer Gravitational-Wave Observatory (LIGO)[4] and

Virgo[5] collaborations have set many upper limits on GW amplitudes or event

rates of various GW sources[6, 7, 8, 9, 10] as they improve the sensitivity of

detectors[11, 12]. In 2015, the advanced LIGO[13] (aLIGO) detected one of

sources, GW from a binary black hole merger[14, 15] in the first observation

run.

The 1st science run(O1) of aLIGO has been taken place and aLIGO is be-

ing upgraded their sensitivity toward to the 2nd science run(O2). The Virgo is
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also being upgraded to the advanced Virgo (AdVirgo)[16] to improve its sen-

sitivity and the Japanese gravitational wave detector, KAGRA[17], has been

constructed and the 1st run has been taken place as initial KAGRA (iKA-

GRA) observation. At present the KAGRA is being upgraded to bKAGRA to

improve its sensitivity. KAGRA will install cryogenic mirrors whose contribu-

tions for improving the sensitivity for gravitational wave was verified by the

CLIO[18, 19] which is a proto-type detector of KAGRA.

In the next decade, many gravitational wave events are expected to be

detected with world wide network of GW detectors. When the gravitational

wave events with low signal-to-noise ratio are detected, the understanding of

the detector noise behavior becomes more important. In many previous works,

the reduction of false noise events and the improvement of the estimation of

the noise behavior such as the power spectrum of the detector noise are done

by identifying non-stationary noises and their sources. Evaluation of the non-

Gaussianity in addition to the non-stationarity can provides new information

on the detector noise behavior. Moreover the indicator of non-Gaussianity may

help to improve the GW search method which is optimal for the Gaussian back-

ground, when the detector noise distribution deviates from stationary Gaussian

distribution. In many previous works, the stationary non-Gaussian noise is not

distinguished from non-stationary noise in explicitly though the various noise

models were suggested for gravitational wave searches. Although [50] focused

on stationary non-Gaussian noise using the Student-t noise model and a pa-
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rameter ν of the Student-t distribution as an indicator of the non-Gaussianity,

the statistical character of ν was not discussed enough for adopting this noise

model. This thesis discuss a method to evaluate the non-Gaussianity of the de-

tector noise and to optimize search methods for the non-Gaussian noise using

Student-t noise model. We investigate a statistical behavior of the indicator

ν in order to adopt the search method assuming Student-t noise model. The

outliers of the distribution of the detector noise can be evaluated with the

indicator ν which is a parameter of the Student-t noise model. We clarify the

confidence interval and threshold of ν above which the Gaussian hypothesis

is rejected, and reveal the domination of the non-Gaussian of LIGO observa-

tional data statistically. The confidence interval and threshold of ν for the

4096 seconds long data are 15.45 ≤ ν ≤ 27.29 (for ν̂ = 25) and νth = 91.4,

respectively. By using this confidence interval and the threshold, we reveal

the domination of the non-Gaussianity in the advanced LIGO and iKAGRA

observational data and reject the assumption that the detector noise follows

Gaussian distribution statistically. The evaluation of ν as an indicator of the

non-Gaussianity of detector noise is described in Chapter 3.

In Chapters 4 and 5, to improve the search method for gravitational waves,

we adopt likelihood function of the Student-t noise model as an optimal fil-

ter instead of the matched filtering method which is used for searching the

gravitational waves from compact binary coalescences and is an optimal fil-

ter for the Gaussian noise. We show that the GW150914 which is the first
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event of the gravitational wave from binary black holes detected by two ad-

vanced LIGO can be detected by the likelihood function of the Student-t noise

model. This work suggests importance and usefulness to take into account of

the non-Gaussianity of the detector noise.



Chapter 1

Detection of Gravitational Wave

1.1 Gravitational Wave

1.1.1 The Einstein’s equation

In the Einstein’s theory of general relativity, the line element, ds, between

different two points is described as

ds2 = gµνdx
µdxν (1.1)

where gµν is the metric tensor. gµν is determined by Einstein’s equation.

The Einstein’s equation which expresses the interaction between gravity

and masses is described as

Gµν =
8πG

c4
Tµν , (1.2)

where Gµν is Einstein’s tensor, G is Newton’s gravitational constant, c is the

speed of light and Tµν is the energy momentum tensor. The Einstein’s tensor

11
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is defined as

Gµν ≡ Rµν −
1

2
gµνR, (1.3)

where Rµν and R are called Ricci tensor and Ricci scalar respectively, and are

defined as

Rµν ≡ Γα
µν,α − Γα

µα,ν + Γβ
µνΓ

γ
βγ + Γβ

µγΓ
γ
νβ, (1.4)

R ≡ gµνRµν , (1.5)

where Γµ
νλ, which is called Christoffel symbol, is defined as

Γµ
νλ ≡ 1

2
gµα(gαν,λ + gαλ,ν − gνλ,α). (1.6)

1.1.2 Wave equation of space-time

The Einstein’s equation is non-linear. The perturbation, hµν to the flat Minkowski

metric ηµν is defined as

gµν = ηµν + hµν , (1.7)

where ηµν is

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0


(1.8)

and |hµν | � 1.
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In this assumption, Eq. (1.3), (1.4), (1.5) and (1.6) become to the first

order of hµν

Gµν =
1

2
h,α

αν,µ[h,α
αµ,ν − h,α

µν,α − h,µν + ηµν(h
,αλ
αλ − h,α

,α)] (1.9)

Rµν =
1

2
(h,α

αν,µ + h,α
αµ,ν − h,α

µν,α − h,µν) (1.10)

R = h,µν
µν (1.11)

Γµ
νλ =

1

2
ηµα(hαν,λ + hαλ,ν − hνλ,α), (1.12)

where h is trace of hµν defined as

h ≡ ηµνhµν . (1.13)

We define a tensor

h̄µν = hµν −
1

2
ηµνh, (1.14)

and impose Lorentz gauge condition,

h̄µν
,ν = 0, (1.15)

the Einstein’s equation can be rewritten as

1

2
h̄,α

µν,α = −8πG

c4
Tµν . (1.16)

In the vacuum, Tµν is 0, we have

(
∇− 1

c2
∂2

∂t2

)
h̄µν = 0. (1.17)

Eq. (1.17) is the equation expressing the propagation of gravitational wave

with speed of light, c, in vacuum.
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A plane wave is one of the solution of Eq. (1.17),

h̄µν = Aµν exp(ikρx
ρ), (1.18)

where Aµν is the amplitude of the gravitational wave and kρ is the four-wave

vector. Two conditions

kρkρ = 0 (1.19)

and

Aµρk
ρ = 0 (1.20)

are needed for Eq. (1.18) to satisfy Eq. (1.15) and (1.17). Eq. (1.20) expresses

that gravitational waves are transverse waves. An arbitrariness of the choice

of coordinates remains even though Lorentz gauge condition is imposed. We

can impose the traceless condition,

Aα
α = 0, (1.21)

and the transverse condition,

AαβU
β = 0, (1.22)

where Uβ is an unit vector of time. Eq. (1.20), (1.21) and (1.22) are called the

Transverse-Traceless (TT) gauge. In these conditions, the gravitational wave
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which propagates in direction of z-axis can be described as

h̄µν = Aµνe
ik(ct−z), (1.23)

Aµν =



0 0 0 0

0 A12 A13 0

0 A13 −A12 0

0 0 0 0


=



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


, (1.24)

where h+ and h× are the polarization of the gravitational waves and are shown

in FIG. 1.1.

1.1.3 Gravitational wave radiation

We consider the radiation of the gravitational wave from a object whose ve-

locity is much smaller than the speed of light. In this case, the linear approx-

imation can be used. The Einstein’s equation can be written as

(
∇− 1

c2
∂2

∂t2

)
h̄µν =

16πG

c4
τµν , (1.25)

where τµν is the energy momentum tensor. Eq. (1.25) can be solved by using

a Green’s function which is the same as the radiation of electromagnetic wave.

h̄µν is given as

h̄µν(x) = −4G

c4

∫
τµν(x′i, x

0 − |xi − x′i|)
|xi − x′i|

d3x′, (1.26)

where x′µ is mass distribution of the matter and xµ is the observation point

which is far enough away from the matter, and i is 1, 2, or 3.
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Figure 1.1: The time evolution of the two polarization, h+ and h×, of a gravi-

tational wave in the case when the gravitational wave enters vertical direction

to the sheet. The blue filled circles represent free masses.
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When the Eq. (1.26) is expanded around the center of gravity of the matter,

x0
G = x0 − |xi − x′i|, by using multipole expansion, the following results are

obtained,

h̄00 = −4G

c4r

[∫
τ 00(x′i, x

0
G)d3x′ +

xl

r

∂

∂x0
G

∫
x′lτ 00(x′i, x

0
G)d3x′ + · · ·

]
, (1.27)

h̄0k = −4G

c4r

[
∂

∂x0
G

∫
x′kτ00(x

′
i, x

0
G)d3x′ +

1

2

xl

r

∂

∂x0
G

∂

∂x0
G

∫
x′lx′kτ 00(x′i, x

0
G)d3x′ + · · ·

]
,

(1.28)

h̄lk = −2G

c4r

[
∂

∂x0
G

∂

∂x0
G

∫
x′lx′kτ 00(x′i, x

0
G)d3x′ + · · ·

]
, (1.29)

where r = |xi − xG,i|. The first term of the Eq. (1.27) represents Newton’s

gravitational field. The first term of the Eq. (1.28) represents the dipole

radiation. However there are no dipole radiation of the gravitational wave

because at the center of mass frame,
∫
ρxid3x equal zero, where ρ is the mass

density. The first term of the Eq. (1.29) represents quadrupole radiation at

the lowest-order of gravitational radiation.

The dimension of the first term of the quadrupole radiation is energy. When

we replace this term with the kinetic energy of the gravitational wave source,

the amplitude of the gravitational wave can be described as

h̄lk ∼ 2G

rc4
Mv4, (1.30)

where M and v are the mass and the speed of motion of the gravitational wave

source.
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1.2 Gravitational Wave Sources

1.2.1 Compact binary Coalescence

The first event which is named GW150914 detected by aLIGO is a coalescence

of binary black holes. Binary coalescence event has been regarded as one of

the most strong source of GWs.

Binary systems emit gravitational radiation. Then the orbital radius shrinks

with time and the frequency of emitted GWs increases until the coalescence.

The frequency of GWs when a binary system coalesces can be written in

approximately as

fISCO ' 2.2kHz

(
M�

m

)
(1.31)

where M� is the mass of the Sun and m is the total mass of the binary

system[20].

Although the lifetime of the these systems is millions of years, GW sig-

nals can be detected only a few minutes before the coalescence in the case of

binary neutron stars because the ground-based interferometric GW detectors

can detect GWs whose frequency is above 10Hz.

The matched filtering technique is often used for searching GWs from bi-

nary systems, because the GW waveform from these systems can be calculated

accurately by using the post-Newtonian approximation of general relativity

when the distance between the two objects is enough large.

FIG. 1.2 shows the theoretical gravitational wave waveform from compact
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Figure 1.2: This plot shows the theoretical gravitational wave waveform from

compact binary systems[21].

binary systems[21]. The amplitude and frequency of the gravitational wave

increase with time until merger of two stars.

In matched filtering technique, we prepare the theoretical waveform such

as FIG.1.2 for various masses and adopt these waveforms as the template.

The total mass and the frequency for the binary black hole coalesces of

GW150914 are m = 70.4M� and fISCO = 64.3, respectively.

1.2.2 Supernova

GWs are expected to be emitted with supernova explosions. Though it is

difficult to predict the theoretical waveform from this kind of source, the typical

frequency of GWs and the duration of signals are expected to be around 1kHz

and a few hundred mili-seconds, respectively. The expected amplitude is [22]

h ∼ 2.7 × 10−20

(
∆E

M�c2

)1/2(
1kHz

f

)1/2(
10Mpc

r

)
, (1.32)

where ∆E is the amount of the emitted energy. The expected value of the

order of ∆E/(M�c
2) is around 10−6.
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1.2.3 Pulsar

The pulsar is the astronomical object rotating and emitting pulsed electro-

magnetic wave. Its period of the rotation is from a few mili-seconds to a few

seconds. A spinning neutron star which has the asymmetry in the inertia mo-

ment can also emit GWs whose frequencies are twice of the frequency of the

rotation. The amplitude of GWs can be estimated as

h ∼ 3 × 10−27

(
10 kpc

r

)(
f

200 Hz

)2 ( ε

10−6

)
(1.33)

where ε is the asymmetry in the inertia moment. The amplitude of GWs

from this source is expected to be weaker than one from the compact binary

coalescence and the supernova explosions. However the spinning neutron stars

can emit GWs continuously so we can improve the signal-to-noise ratio by

integrating the signal for a long period.

Many pulsars are known by electromagnetic observation and are set upper

limits by gravitational wave searches. Some upper limits for the gravitational

wave amplitude from pulsar by LIGO and Virgo collaboration are shown in

Table 1.1[23].

1.3 Data analysis method of the various sources

There are two types of gravitational wave. In one case, the waveform is known

theoretically like binary coalescences, and in the other case, the waveform is

unknown like supernova explosions.
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Table 1.1: The upper limit for the gravitational wave amplitude from well

known pulsars[23].

Source frequency [Hz] hupper limit

Vela 22.3840 3.2 × 10−24

Crab 59.4448 7.0 × 10−25

Matched filtering method

When the waveform we want to search is known, the matched filter is one of

the most efficient method. The inputs of matched filter are the detector signal

s and the template waveform hT . The matched filter is expressed as

ρ =

∫ ∞

−∞

s(f)h∗T (f)

Sn(f)
df, (1.34)

where ρ is detection statistic of the matched filter and Sn(f) is the power

spectrum density of the detector noise. The basic idea of this method is to

compute the inner product between the gravitational wave signal and template

waveform. The inner product is weighted by the detector sensitivity, Sn(f).

When we assume that the detector signal, s, contains the gravitational wave

signal, h and the noise, n, the detection statistic, ρ can be rewritten as

ρ =

∫ ∞

−∞

h(f)h∗T (f)

Sn(f)
df +

∫ ∞

−∞

n(f)h∗T (f)

Sn(f)
df. (1.35)

From Eq. (1.35), the statistical behavior of ρ depends on one of the noise.
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Excess power method

When the waveform of gravitational wave is difficult to know theoretically, the

excess power method is one of the efficient method[24, 25]. The excess power

method can be described as

ε =

∫ ∞

−∞

s(f)s∗(f)

Sn(f)
df

=

∫ ∞

−∞

h(f)h∗(f)

Sn(f)
df + 2

∫ ∞

−∞

h(f)n∗(f)

Sn(f)
df +

∫ ∞

−∞

n(f)n∗(f)

Sn(f)
df.(1.36)

The statistical behavior of detection statistic, ε, also depends on n.

In order to understand the statistical behavior of the detection statistics

of both method we should investigate the noise distribution. The precision

of the expected value of the noise power spectrum, Sn(f), depends on the

standard deviation of the noise because we should estimate Sn(f) from the

finite length data in general. Statistical behavior of the detection statistics

can be described easy when the detector noise is Gaussian. The Gaussianity

of the detector noise is described in Chapter 2.
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1.4 Laser Interferometric Gravitational Wave

Detector

1.4.1 Principle of Interferometric Detectors

Michelson interferometers operate as the gravitational wave detectors. A sim-

ple Michelson interferometer consists of laser, beam splitter, two mirrors, and

photodetector. Figure 1.3 shows the simple Michelson interferometer. Laser

light is separated into two arms of the interferometer at the beam splitter,

and reflected at the mirrors which are suspended at the end of the two arms.

Reflected light comes back to beam splitter, and the photodetector receives

interference of the light from two arms. Because two suspended mirrors

correspond to free masses, incident gravitational waves toward interferometer

change the optical path length of the two arms. Gravitational waves can be

detected as a change of the intensity of the interference of light.

1.4.2 Detector Response for GWs

The Interferometric gravitational wave detectors receive gravitational wave

strain h(t) as

h(t) = F+h+(t) + F×h×(t) (1.37)
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Figure 1.3: This is a simple Michelson interferometer. The simple Michelson

consists of the laser, beam splitter, two mirrors, and photodetector. Gravi-

tational waves are detected as a change of the intensity of the interference of

light because the incident gravitational waves change the optical path length

of two arms.
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where the F+ and F× are the detector responses which are described as

F+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ + cos θ sin 2φ sin 2ψ (1.38)

F× = −1

2
(1 + cos2 θ) cos 2φ sinψ + cos θ sin 2φ cosψ (1.39)

where θ is the angle between the z-axis and direction from the interferometer

to the GW source, φ is the angle between the x-arm of interferometer and

the projection of the direction from the interferometer to the GW source to

detector plane, and ψ is the polarization angle. These angles and the response

of detector are shown in FIG. 1.4.

At present the two advanced Laser Interferometer Gravitational wave Ob-

servatory (aLIGO) in Hanford, Washington and Livingston, Luisiana, the ad-

vanced Virgo(AdVirgo) in Pisa, Italy and the KAGRA in Kamioka, Japan

are operating as kilo-metre scale interferometric detector. These detectors are

expected to observe gravitational waves in simultaneously and to make up for

the direction where the detector response is small each other.

1.4.3 Operating detectors

Four interferometric detectors which have kilo-metre scale of arms will be oper-

ated in the near future. The design sensitivities of these detectors are h ∼ 10−24

around a few hundred Hertz.
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Figure 1.4: Top panel shows the detector response F 2
+ and F 2

× as the function

of the sky location, θ, φ, and ψ.The definition of θ, φ, and ψ are shown in the

bottom panel.
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KAGRA

The Japanese gravitational wave detector which has 3km-arms, KAGRA[17],

is constructed in the Kamioka mine. The uniqueness of KAGRA is the un-

derground site and the use of cryogenic mirrors. These characteristics can

contribute to reduce the seismic activity and the thermal noise. The design

sensitivity of KAGRA is shown in FIG. 1.5

Advanced LIGO

The advanced LIGO is made up of two interferometric detectors which have

4km-arms. One of them is located in Hanford, Washington and another is

located in Livingston, Luisiana. These two detectors are approximately aligned

for the simultaneous observation. The design sensitivity is shown in FIG. 1.6

Advanced Virgo

The advanced Virgo(AdVirgo) is located in Pisa, Italy. AdVirgo has the 3km

arms. The design sensitivity of AdVirgo is shown in FIG. 1.7.

1.4.4 Detector noise

The optical path length of the arms of the interferometer are changed by

gravitational waves. They are also changed by the various noises. The principle

noises of the gravitational wave detectors are the following.
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Figure 1.5: Top panel shows the image of a bird’s-eye view of KAGRA[26].

Bottom panel shows the design sensitivity of KAGRA[27]. The vertical axis

and horizontal axis represent the frequency and the strain equivalent value of

the noise power spectrum density, respectively.
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Figure 1.6: Top panel shows aerial photographs of advanced LIGO at Hanford

and Livingston[28]. Bottom panel shows the design sensitivity of advanced

LIGO[29]. The vertical axis and horizontal axis represent the frequency and

the strain equivalent value of the noise power spectrum density, respectively.
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Figure 1.7: Top panel shows an aerial photograph of advanced Virgo[30].

Bottom panel shows the design sensitivity of advanced Virgo[31]. The vertical

axis and horizontal axis represent the frequency and the strain equivalent value

of the noise power spectrum density, respectively.
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Seismic noise

The seismic activity shake the mirrors and change the optical path length.

The power spectrum of the seismic activity follows

xseis(f) = 10−9 × f 2[m/rHz] (1.40)

where f is the frequency and 10−9 is a factor at the Kamioka mine[32]. The

factor of power spectrum depends on the location of the detector. The noise

caused by seismic activity is suppressed by the suspension system. Because

the multistage pendulum is adopted as the suspension system, The drastic

suppression of the seismic noise is realized in especially high frequency. Thus

the seismic noise dominates only below about 10Hz in KAGRA, aLIGO, and

AdVirgo

Shot noise and radiation pressure noise

The laser light passes through the arms of the interferometer. The shot noise

is caused by the fluctuation of the photon number in statistically. The power

spectrum of the shot noise follows

xshot(f) ∝
√
h̄cλ

P
, (1.41)

where h̄ is reduced Plank constant, c is the speed of light, λ is the wavelength

of the laser light, and P is the laser power[33]. The shot noise is suppressed

by increasing laser power. The mirrors are subjected to the radiation pressure

when the laser light is reflected by mirrors. Then the position of the mirrors
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fluctuates by fluctuation of the radiation pressure. The power spectrum of the

radiation pressure noise follows

xrad(f) ∝ 1

Mf 2

√
h̄P

cλ
, (1.42)

where M is a mass of the mirror[33]. The radiation pressure noise is suppressed

by increasing the mass of mirrors or decreasing laser power.

We cannot reduce both radiation pressure noise and shot noise in the same

time by changing for the laser power. We should set the laser power considering

other noise sources and the frequency of gravitational waves.

Thermal noise

The suspension system and mirrors of the interferometer are excited by the

Brownian motion because the temperature of the interferomter is finite. When

we assume that the mechanical loss is absence, the power spectrum of the

Brownian motion is given as

〈x(ω)〉2 ∼ 4kBT

Mω3
0Q

(ω � ω0) (1.43)

∼ 4ω0kBT

Mω4Q
(ω � ω0), (1.44)

where kB is the Boltzmann constant, T is a temperature, ω0 is the resonance

frequency, and Q is a quality factor[34]. The mirrors of interferometer is sus-

pended to be behaved as free masses. The thermal fluctuation of the suspension

system causes the vibration of the center of gravity of the mirrors. In general

the resonance frequency of suspension system is around 1 Hz, so the power
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spectrum of the thermal noise of suspension system in the frequency band in

which we search for gravitational waves is given as

xsus(f) ∝

√
T

QM
f−2. (1.45)

Elastic vibration of the mirrors is also excited by the thermal fluctuation.

The shape of mirrors should be decided so that the resonance frequency of

mirror is high enough compared to the frequency band in which we search for

gravitational waves. Then the power spectrum of the thermal noise of mirror

is given as[35]

xmirror(f) ∝

√
T

QM
. (1.46)

These thermal noise can be reduced by lowering the temperature of the sus-

pension system and mirrors.





Chapter 2

Gravitational Wave Detector

Noise Models

2.1 Detector noise and linear response system

In the search for gravitational wave, as described in Section 1.3, the behavior

of the detection statistics can be described simply when the detector noise is

Gaussian.

The gravitational wave detectors is the response system to grasp a small

displacement. Such system can be regarded as linear response system locally.

In the linear response system, a vibration mode of mechanical vibration can

be regarded as a harmonic oscillator which follows,

mẍ + γẋ + kx = 0. (2.1)

Considering the case that this oscillator is subjected to a shaking force, the

35
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motion of the oscillator can be described as

mẍ + ẋ + kx = f(t), (2.2)

where f(t) is the shaking force and dot represents the derivative with respect

to time.

The shaking force f(t) can be regarded as the sum of the infinitesimal

pulsed forces. The total force subjected from t to t+ ∆t can be described as

f(t) =
1

∆t

∑
j

fj, (2.3)

where fj is the infinitesimal pulsed forces.

The total force, f(t) follows the Gaussian distribution by the central limit

theorem when the following conditions are satisfied; (1) The shaking force is

random.;(2) The shaking force is continuous. In other words, a number of the

summation in Eq. (2.3) is large enough. (3) The standard deviation of f(t) is

finite and is not zero.

The mechanical vibration is Gaussian when the shaking force is Gaussian

on the linear response system. In Gravitational wave detectors, detector noise

can be regarded as Gaussian noise as far as above three conditions are satisfied.

On the other hand, when these conditions are not satisfied due to, for example,

the presence of the discrete force, the detector noise does not follows Gaussian

distribution. In addition to this, the detector noise does not follows Gaussian

distribution when the gravitational wave detectors cannot be regarded as linear

response system even though the shaking force is Gaussian.
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2.2 Gaussian Noise

The noise of gravitational wave detector contains various sources. Principle

noise components are seismic activity, thermal noise, radiation pressure noise

and photon shot noise. These noise were assumed to be Gaussian in many ear-

lier theoretical studies[36] because the deviations from Gaussian distribution

can often be regarded as the non-stationary noise and the statistical treatment

of the Gaussian behavior is easier than that of the non-Gaussian behavior.

In the case of Gaussian noise, the real part <[ñ(f)] and imaginary part

=[ñ(f)] of the Fourier transform of detector noise ñ(f) follow the Gaussian

distribution,

pG(x) =
1√
2πσ

exp

(
− x2

2σ2

)
, (2.4)

where x is either <[ñ(f)] or =[ñ(f)] and σ is the standard deviation of x. The

absolute value of ñ(f), |ñ(f)|, then follows Rayleigh distribution,

pR(x) =
x

σ2
exp

(
− x2

2σ2

)
, (2.5)

where x is |ñ(f)|.

Unfortunately, it is known from the experiences of the GW searches[37, 38]

that the detector noise includes non-stationary and/or non-Gaussian noise

components. Some examples of the histogram of the |ñ(f)| of LIGO S5 ob-

servational data are shown in FIG. 2.1. The amplitude spectrum |ñ(f)| is

calculated per 1 second and these histograms contains the 1024 second long

data. The behavior of the tail of the distribution of the detector noise are
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difference between the top panel and bottom left panel in FIG. 2.1. The bot-

tom right panel in FIG. 2.1 shows the noise distribution which contains some

outliers. Because misreading the noise distribution increase the false events

caused by the detector noise, evaluating the noise distribution is important

for reliable detection of gravitational waves. Evaluating mean or variance of

noise is one of the useful method for understanding noise behavior. However

when the detector noise contains outliers originated from non-stationary noise,

it is difficult to estimate mean and variance of the stationary noise. In this

kind of situation, it is useful to use cumulative distribution or quantiles of the

noise for characterizing the behavior of the stationary noise since cumulative

distribution and quantiles are more robust for outliers than high-order mo-

ments. Because these non-Gaussian distributed noise tend to have a heavy

tail, estimating a quantile of noise distribution is one of the effective measure.

2.3 Realistic Detector Noise

The assumption that the detector noise follows Gaussian distribution often

good as zeroth order approximation. However we can not always adopt this ap-

proximation because there are cases when non-Gaussianity and non-stationarity

dominate in a certain time or frequency band. The non-Gaussianity and the

non-stationarity make the false alarm rate increase and make it hard to esti-

mate behavior of noise such as noise power spectrum of stationary and stable
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Figure 2.1: These plot show the histogram of the |ñ(f)| of LIGO S5 Obser-

vational data. The amplitude spectrum |ñ(f)| is calculated per 1 second and

these histograms contains the 1024 second long data.
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component of noise.

Fig. 2.2 shows the normalized noise level of LIGO data[39, 40] as a func-

tion of frequency. The data used was taken from the GPS time 842747904

to 842764288. This figure shows that the LIGO data is not an ideal Gaus-

sian noise especially in low frequency band. According to the results of the

LIGO observation, the false events caused by detector noise were greater than

the ones which is estimated in the case that the detector noise follows Gaus-

sian distribution[8, 41]. Non-Gaussianity in low frequency shown in FIG. 2.2

is probably one of the cause of increasing false events. Although the non-

Gaussian noise are not always dominant, we find the non-Gaussianity in a

certain time and frequency region such as Fig. 2.2.

The matched filtering method which is most popular method to search for

gravitational waves from compact binary coalescences is optimal in the case

of Gaussian noise (see Chapter 4). There are many cases that the tail of

detector noise distribution is larger than the Gaussian distribution. In these

cases, the estimated power spectrum of the detector noise is contaminated by

noise which belongs to outlier. Moreover the noise events with high signal-

to-noise ratio increase because the higher order moment such as variance of

heavy tail distribution is larger than the Gaussian distribution. When the

detector noise contains non-Gaussian and non-stationary noise component,

using the search method that assumes the Gaussian noise may become serious

problem especially in the era of the detection of GWs, since the detection
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with low signal-to-noise ratio is predicted especially in the initial phase of GW

detection. Reducing false alarm is also important for using possession time of

other detectors in the multi-messenger survey.

Through the past observation runs of LIGO and Virgo, there have been a

lot of efforts to improve the performance of the GW searches by identifying and

eliminating narrow-band and transient non-stationary noise events contained

in the detector noise[38, 42, 43, 44, 45]. Identification of noise sources and their

removal have been done by evaluating non-stationarity of the many auxiliary

channels of the GW detector from the perspective of telescope diagnosis[46, 47].

Moreover some new methods that is robust against contamination by non-

Gaussian noise was suggested[48, 49] and showed that the performance of a

matched filtering method for a GW from a compact binary coalescence from

the data of the fifth Science run (S5) of LIGO was improved compared with

the method based on the Gaussian noise model[50, 51, 52]. In these works,

non-Gaussian noise was not distinguished from non-stationary in explicitly.

Although [50] focused on stationary non-Gaussian noise by using Student-t

noise model and the parameter ν of Student-t distribution as an indicator of

non-Gaussianity, the accuracy and precision of ν which is estimated from de-

tector data were not discussed. We will explain the Student-t noise model

in next section and will investigate the accuracy and precision of ν in order

to reveal the domination of the non-Gaussianity statistically (see Chapter 3).

Investigating such non-Gaussianity may improve the GW-search performance
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compared with the method based on Gaussian noise model by ignoring such

non-Gaussianity. So investigating non-Gaussianity enables us to use the de-

tector signal with poor quality.

2.4 Non-Gaussian Noise Model

The non-Gaussian components in the GW detector noise make the false alarm

rate increase and make it hard to estimate behavior of noise such as noise power

spectrum. There is a possibility to suppress these false events by quantifying

weight of tail of the noise distribution. We introduce the Student-t distribution

for evaluating weight of tail of the distribution.

The Student-t noise model is known as one of the non-Gaussian noise mod-

els which is a natural extension of Gaussian noise model[53]. In this model

<[ñ(f)] and =[ñ(f)] follow the Student-t distribution,

pST(x) =
Γ(ν+1

2
)

√
νπσsΓ(ν

2
)

(
1 +

1

ν

(
x

σs

)2
)− ν+1

2

, (2.6)

where x is either <[ñ(f)] or =[ñ(f)], σs is a scaling parameter and ν is a

positive value which characterizes the weight of the tail of the distribution.

The scaling parameter can be described with standard deviation σ of ñ(f) and

ν as

σs = σ

√
ν − 2

ν
. (2.7)

|ñ(f)| then follows the Student-Rayleigh distribution,

pSR(x) =
x

σ2
s

pF (2,ν)

(
x2

2σ2
s

)
(2.8)
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Figure 2.2: This plot shows the 50%(Red stars), 90%(Green filled square),

95%(Blue filled circles), and 99%(Pink filled triangle) quantiles of the distribu-

tion of the LIGO S5 data taken from GPS time 842747904 to 842764288. Each

quantile was calculated from 218 samples in every 16Hz. Dashed line, a dot

chain line, a two-dot chain line and a three-dot chain line represent the 50%,

90%, 95% and 99% quantiles expected if the data follows Gaussian distribu-

tion respectively. This figure indicates detector noise deviates from Gaussian

distribution especially in low frequency band.



44CHAPTER 2. GRAVITATIONAL WAVE DETECTOR NOISE MODELS

where x is |ñ(f)|and pF (2,ν) is the probability density function of the F -

distribution with the degrees of freedom (2, ν)[54, 55]. The relation between

the scaling parameter, σs, and standard deviation of <[ñ(f)] and =[ñ(f)], σ,

is Eq. (2.7).If the variance σ2 of the detector noise is a priori known, some of

the statistical properties of our estimator of ν can be calculated analytically.

Unfortunately, σ2 is unknown in general and we must estimate σ2 from de-

tector noises. So we investigate statistical properties of an estimator of ν by

plugging the sample estimate of σ into the expressions. It is noted that Eq.

(2.6) and Eq. (2.8) are Gaussian and Rayleigh distribution in ν → ∞ limit.

The Rayleigh and Student-Rayleigh distributions with ν of 4, 8, 16 and 64 are

shown in Fig. 2.3. The weight of the tail is characterized by the parameter

ν[56].

It is useful to use ν as a measure which characterizes the deviation from

Gaussianity, because the detector noise is known to follow a heavy tail distri-

bution and this noise tail distribution increases false alarm events.

It is not necessary for using ν as the indicator of non-Gaussianity that

the detector noise always follows the Student-t distribution. In this kind of

situation, though we cannot determine the strict distribution of the detector

noise using ν, ν can shows the weight of the tail of noise distribution.
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Figure 2.3: This plot shows Rayleigh distribution(Black solid line) and

Student-Rayleigh distribution functions with σs = 1 for various ν. Each color

means ν = 4(Blue dashed line), ν = 8(Green 1-dot chained line), ν = 16(Pink

2-dot chained line) and ν = 64(Red 3-dot chained line). In small ν case, the tail

of distribution is large. On the other hand, the Student-Rayleigh distribution

is closer to Rayleigh distribution for large ν.





Chapter 3

Characterization of Detector

Noise

3.1 Data Processing of Estimating ν

We quantify the non-Gaussianity of detector noise by using Student-t noise

model and parameter ν. An algorithm to estimate ν from the detector noise

is shown in Fig. 3.1. Let us denote the total data length in seconds by

T and the sampling frequency in Hz by fs, and the product of the two by

2M (assuming M to be an integer for simplicity). Detector output discrete

time series n(tk) (k = 1, ..., 2M .) is divided into N chunks ni(t) with each

tFFT = T/N seconds. Then time series data of each chunk ni(t) is Fourier

transformed into ñi(fj) (j = 1, ...,M .). We then estimate the parameter ν for

the i-th chunk at the coarse frequency bin α using l samples around the bin.

47
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Specifically, the estimator ν, denoted by ν̂i(fα) is calculated from l samples

of ñi(fj) (j = α − l/2, ..., α + l/2) using the method explained below. The

frequency resolution of ν̂i(fα) is determined by l such that δF = l/tFFT > 1/T .

The p-quantile, QP , is sought from l-sample data around α-th bin in fre-

quency domain. The estimator ν̂ is defined as

ν̂ ≡ arg min
ν

|QP −QSR(σs, ν; P )| (3.1)

where QSR(σs, P ; ν) is the theoretical quantile function of Student-Rayleigh

distribution.

The cumulative distribution function and quantile function of Student-

Rayleigh distribution are described as

PSR(ν, σs; x) = 1 −
(

1 − (x/σs)
2

ν + (x/σs)2

)ν/2

(3.2)

and

QSR(ν, σs; P ) = σs

√
ν(1 − (1 − P )2/ν)

(1 − P )2/ν
(3.3)

respectively.

Although we do not know the true value of σs of ñi(fj) in general, standard

deviation σ of ñi(fj) is estimated as

Sn(f) =
< ñ(f) ñ∗(f) >

tFFT

(3.4)

=
2σ2

tFFT

. (3.5)

In other words, σs can be estimated as

σs = σ

√
ν − 2

ν
=

√
ν − 2

ν
Sn(f)tFFT. (3.6)
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Figure 3.1: The algorithm of estimating ν̂ from the detector noise.

So using normalized noise, |ñi(fj)|/
√
Sn(f)tFFT instead of |ñi(fj)|, by the stan-

dard deviation instead of |ñi(fj)| allows that we use the description eliminating

σs,

Q′
SR(ν; P ) =

√
(ν − 2)(1 − (1 − P )2/ν)

(1 − P )2/ν
(3.7)

as the quantile function of Student-Rayleigh distribution instead of Eq. 3.3.
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3.2 Rejection test of Gaussian noise hypothe-

sis

This section shows the response of estimator ν̂ for Gaussian noise. Strictly

speaking, ν̂ estimated from Gaussian noise is infinity. However we obtained ν̂

as finite value because ν̂ is estimated from finite samples. We introduce the

threshold on ν̂ above which data follows Gaussian distribution taking account

of dependency on data length. Fig. 3.2 shows the histograms of obtained ν̂.

Data sets of detector noise are generated by pseudo random numbers which

follow Guassian distribution. We test the method for estimating ν̂ using the

data whose lengths T are 128, 256, 512, 1024, 2048 and 4096s. The p-value

and entry numbers of all histograms are 0.99 and 524, 288.

The thick red region represents 1% lower tail of the ν̂ distribution. If

we take 1% (α = 0.01) significant level, the corresponding region is ν̂ <

να=0.01,T=4096s = 91.4. Hence, we can reject the null-hypothesis that data fol-

lows Gaussian distribution by 99% confidence if we set the threshold να=0.01,T=4096s =

91.4, modulo the error inherited in our Monte Carlo simulations.

The να depends on the data length T. FIG. 3.3 shows the να with T =

128, 256, 512, 1024, 2048, and 4096s.

Long data length is favorable for detecting non-Gaussianity in the detector

noise. However it is difficult to choose the long data length like as a day, a

week, etc. because our method assumes the stationarity of data during the
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Figure 3.2: The resulting histogram of the estimated ν̂’s for 524,288 sets

of simulated Gaussian noise data. The data length of the simulated noise is

4096s. This figure shows that even for purely Gaussian noise, ν̂ can be small

with a non-negligible probability. The critical region for rejecting Gaussianity

is determined by the histogram. When data length T = 4096s, νth = 91.4.

data length T .

In LIGO experience, the stationarity of detector noise can be regarded

during a few hours in typically[41]. A excess power method for searching

gravitational wave burst typically regarded the detector noise as stationary

during a few minutes[57].
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Figure 3.3: This plot shows the critical regions for rejecting Gaussianity with

significance levels of 1% and 0.1%. In the lower region of each line, Gaussian

noise hypothesis is rejected with 99%(red) and 99.9%(blue) confidence. e.g.

when ν is estimated from 1024 second long data, the hypothesis of Gaussianity

is rejected if ν ≤ 59.0 with 99% confidence.
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3.3 The precision of the ν as the indicator of

non-Gaussianity

In this section, we discuss the precision of ν̂. The tail of distribution of Student-

Rayleigh model rapidly gets heavy in small ν. On the other hand when ν is

large, the non-Gaussianity is not significant, and the tail of distribution gently

gets heavy. So precision of ν̂ depends on ν.

In order to evaluate the degree of non-Gaussianity quantitatively it is im-

portant to investigate the confidence interval of ν. Now, we prove that our

estimator of ν is strongly consistent, therefore asymptotically unbiased.

proposition. ν̂ is strongly consistent.

proof. We define QSR{n}(p, ν) as a p-quantiles of n samples distributed in

Student-Rayleigh function. By the strong law of large number at a given ν,

Q−1
SR{n}(QSR(p, ν)) → Q−1

SR(QSR(p, ν)), almost surely. (3.8)

Since p = Q−1
SR{n}(QSR{n}(p, ν)) = Q−1

SR(QSR(p, ν)),

QSR{n}(p, ν) → QSR(p, ν), almost surely, (3.9)

by the continuous mapping theorem. ν̂ → ν is proved by applying continuous

mapping theorem again because Eq. (3.3) is also the continuous function of ν.

2
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Confidence interval of ν is difficult to calculate because ν̂ is not asymptotic

normal and in general, we do not know the true variance of detector noise.

However, confidence interval can be approximated in the following sense[58].

By simulations using Student-t noise model with various ν, we can find

νlower(ν) and νupper(ν) such that P (νlower < ν̂ < νupper) = 1 − α. On the other

hand a confidence interval is [ν̂lower, ν̂upper], such that P (ν̂lower < ν < ν̂upper) =

1 − α. Here we propose ν̂lower := νlower(ν̂) and ν̂upper := νupper(ν̂). Although

there is no rigorous reason why P (ν̂lower < ν < ν̂upper) = P (νlower(ν̂) < ν <

νupper(ν̂)) equals 1−α, we use [νlower(ν̂), νupper(ν̂)] instead of confidence interval.

νupper and νlower can be calculated as follows. Fig. 3.4 shows the histograms

of ν̂ estimated from the Student-t noise with ν = 25.

The configuration of this simulation is the same as in previous Gaussian

simulation (524,288 sets of simulation noise and data length T = 4096s). The

ν of the simulated Student-t noise is 25. The thick red region represents 1%

upper νupper and lower νlower tails of ν̂. The corresponding ν are 23.4, 48.8,

respectively. We performed the same simulations using simulated Student-t

noise changing ν from 8 to 50. Fig. 3.5 shows νlower and νupper as the function

of ν̂. In Fig. 3.5, the red solid line and the blue dashed line represent the lower

(νlower) and the upper (νupper) boundaries of the 98% and 99.8% confidence

region respectively. Confidence interval is in between νlower and νupper. When

ν̂ = 25, 98% confidence interval is 15.45 ≤ ν ≤ 27.29. The confidence interval

becomes wider rapidly as ν become larger.This behaviour of confidence interval
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Figure 3.4: This plot shows result of estimated ν for 524,288 sets of simulated

Student-t noise in case of ν = 25. Estimated ν fluctuate and 1% confidence

upper(νupper) and lower(νlower) boundary are νupper = 48.8 and νlower = 23.4.

comes from the fact that the shape of the Student-Rayleigh distribution is more

sensitive to the change of ν in the case of small ν than the in case of large ν.

Fig. 3.6 shows the dependence of the confidence interval on the data length

T . The upper and the lower red line represent νupper and νlower in the case of

Student-t noise with ν of 25 as a function of T . The confidence interval of

ν̂ gets monotonically narrower. When T = 2048, 4096, the 98% confidence

intervals are 14.52 ≤ ν ≤ 29.91, 15.45 ≤ ν ≤ 27.29, respectively.
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Figure 3.5: This plot shows the 98%(Red line) and 99.8%(Blue line) confi-

dence interval of ν when estimation time is 4096s. For small ν value, resolution

of ν is good. For example, when we obtain ν = 25 in case of 4096s estimation

time, 98% confidence interval of ν is 15.45 ≤ ν ≤ 27.29
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Figure 3.6: This plot shows the dependence of confidence interval as a function

of the data length. The precision of the estimated ν is bad for short data.
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3.4 Application to the real data

3.4.1 LIGO S5 observation data

We apply the above method to LIGO data of the fifth science run which can

be obtained from the LIGO Open Science Center[39]. Fig. 3.7 shows the

observed ν̂ at each frequency as a function of time. GPS time of the data

is from 842747904 to 842760192, and the resolution of time δt and frequency

δF are 128s, 16Hz, respectively. This result is obtained by the data length

T = 1024s with overlapped time Tlap = 896s.

The ν̂ in the frequency band 30-60Hz is ∼ 15. The confidence interval is

9.3 ≤ ν̂ ≤ 15.4. This non-Gaussianity continues for 16384 seconds where we

analyzed. The ν̂ in the frequency band 100-1kHz and the time 8000-9000s is

∼ 50.

The threshold that the Gaussian hypothesis is rejected is 59 when T =

1024s from FIG. 3.3. The detector noise in the frequency band 30-60Hz can

be regarded as non-Gaussian noise with 99% confidence. This domination of

non-Gaussianity is consistent with the large deviation of the quantile from

Gaussian noise shown in FIG. 2.2. The domination of non-Gaussianity in

8000-9000s is not revealed in FIG. 2.2. On the other hand, we can regard this

time-frequency region as non-Gaussian noise with 99% confidence by using ν.

FIG. 3.7 provides us with the temporal evolution of non-Gaussianity of data.

So we can reveal the time scale in which the non-Gaussianity is dominant.
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The domination of non-Gaussianity due to noise transient which appears

around 8000s, from 100 to kHz band is detected. In this region, ν is from 40 to

60 and non-Gaussianity continues for about 300 seconds. This transient non-

Gaussianity is also enough to reject the assumption that the detector noise in

this region is Gaussian with 99% confidence(local probability).

These results show the detector noise can be distinguished from Gaussian

noise quantitatively. In addition to this we succeed to extract the degree of

non-Gaussianity in the time scale and frequency band.

Fig. 3.8 shows the distribution of the LIGO detector noise in the time-

frequency region where the frequency and the time elapsed from the GPS time

= 842747904 of red and blue histograms are (f = 128Hz, t = 6144s) and

(f = 32Hz, t = 1024s), respectively. The estimated ν̂ of the former region is

∼ 200 which can be regarded as Gaussian. That of the latter region is ∼ 15

lasting entire time in the figure. The latter region is not Gaussian distributed

and this non-Gaussianity is not transient but the stationary non-Gaussianity

at least this noise behavior continues 16384s.

FIG. 3.9 shows the time evolution of the observed ν̂ at each frequency

in GPS times different from FIG. 3.7. The GPS times of the first samples

of those data sets are 841449472, 842489856, 864575488 and 870838272 with

16384 seconds long data. Other parameters are the same as those of FIG. 3.7.

We have arbitrarily selected those four periods of data except for the selection

conditions where those periods (1) do not contain any gap (i.e., no loss of
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samples) for 18,000 seconds, (2) include no hardware injection, and (3) satisfy

the “CAT1” in the literature of LIGO and Virgo collaboration[37]. Moreover,

we demand that (4) those periods almost satisfy the “CAT3/4” conditions

except for the one starting at the GPS time 870838272 where we intended

to study the effect of “CAT4”. “CAT” represents the data quality which is

defined by LIGO and Virgo collaboration. According to [37], the data which

does not satisfy the “CAT1” is excluded for science, because this data segment

includes malfunctions of the detector. In the data segments which does not

satisfy the “CAT3/4”, the coupling between the noise and detector output is

established. Note that we demand the condition (1) to exclude possible edge

effects and used only middle 16,384 seconds of data. The deterioration of

Gaussianity in low frequency band can be revealed in all figures. Bottom right

panel shows ν̂ of the bad quality data where data does not belong to “CAT4”.

The Gaussianity of the data shown in bottom right panel of FIG. 3.9 can be

rejected in almost all frequencies and time with 99% confidence. Four panels in

FIG. 3.9 suggest that the domination of non-Gaussianity appears in the LIGO

S5 data even though the data is categorized as “CAT4” which represents good

quality enough for science.

3.4.2 iKAGRA observation data

The iKAGRA is the first observation phase of the KAGRA without cryogenic

mirrors. The observations were taken place twice from 25 Mar. 2016 to 31
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Figure 3.7: This plot shows the estimated ν̂ for the real LIGO S5 data

as a function of time. GPS time of the data is from 842747904 to 842760192,

resolution of time δt and frequency δF are 128s, 16Hz, respectively. This result

is obtained by the data length T = 1024s with overlapped time Tlap = 896s.

Purple region means Gaussianity of noise is bad and there are many non-

Gaussian region especially in low frequency band.
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Figure 3.8: This plot shows the distributions of the LIGO detector noise in

the time-frequency region where time from GPS=842747904, t, frequency, f,

and their widths, dt, df are (t = 6144s, f = 128Hz, dt = 128s, df = 16Hz) for

red histogram and (t = 1024s, f = 32Hz, dt = 128s, df = 16Hz) for blue one.

Entry of each histogram is 16384.
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Figure 3.9: These plots show the time evolution of the observed ν̂ at each

frequency of the LIGO S5 observational data. GPS time of the top left, the

top right, the bottom left and the bottom right panel is 841449472, 842489856,

864575488 and 870838272, respectively. Other parameters are same as ones

of FIG. 3.7. Bottom right panel shows the bad quality data which does not

belong to “CAT4” in the literature of LIGO and Virgo collaboration[37]. Other

panels show good quality data which belongs to “CAT4”.
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Mar. 2016 and from 11 Apr. 2016 to 25 Apr. 2016. The longest continuous

lock was longer than 16 hours and the typical strain sensitivity was ∼ 10−15

at the 200Hz.

We apply our method for iKAGRA observational data and estimate ν(t, f)

as a measure of non-Gaussianity. The ν(t, f) of the iKAGRA data is shown in

FIG. 3.10. The analyzed four data segments are chosen from the longest unin-

terrupted lock. The GPS time of these segments are 1144320096, 1144561984,

1144706592 and 1144924256. Another parameters are same as those of FIG.

3.7.

Below 100Hz, the continuous non-Gaussianity can be seen common in the

LIGO S5 observation data. The hypothesis that the detector noise follows

Gaussian distribution is rejected with 99% confidence level in these time-

frequency region.

Moreover the periodical occurrence of the non-Gaussianity can be seen

around 1kHz. Those non-Gaussianities continue for about 1000s and their

period are roughly 2 hours.

3.5 Robustness of ν for non-stationary noise

In the previous section, we assumed that the detector noise is stationary at least

during the data length T . However the detector noise in many cases contains

the non-stationary noise, and it is difficult to assume that the detector noise

is completely stationary in long period such as one hour, one day, and so on.
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Figure 3.10: These plots show the time evolution of the observed ν̂ at each

frequency of the iKAGRA observational data. GPS time of the top left, the top

right, the bottom left and the bottom right panel is 1144320096, 1144561984,

1144706592 and 1144924256, respectively. Other parameters are same as ones

of FIG. 3.7. In this configuration, the Gaussian hypothesis is rejected in νth <

59.0 with 99% confidence.
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In order to investigate the effect of the non-stationary noise on our esti-

mator ν, we apply our method for the simulated noise which contains (1) the

stationary Gaussian noise, (2) the stationary Student-t noise, and (3) the sta-

tionary Gaussian noise with the non-stationary noise. The simulated noise in

the case of (1) and (2) are the same as the Sec. 3.2, and Sec. 3.3, respectively.

The simulated noise in the case of (3) contains the non-stationary noise whose

amplitude corresponds to 5σ of the stationary Gaussian noise at the rate of

one event per one minute.

Moreover we evaluated the kurtosis of the these three types of the simulated

noises. The kurtosis is expected to be more sensitive by the non-stationary

noise than the our estimator ν. We adopt the kurtosis whose expected value

equals to zero in Gaussian noise

(kurtosis) =
1
N

∑N
i=1(xi − µ)4

σ4
− 3, (3.10)

where xi is the samples, µ is the mean of xi, and σ is the standard deviation

of xi.

The FIG. 3.11 shows the scatter plot of ν and kurtosis of the simulated

noise with 4096s length. In the case of the stationary Gaussian and Student-t

noise model, the relation between the ν and kurtosis is given as

(kurtosis) =
6

ν − 4
. (3.11)

The kurtosis is monotonic increasing with decreasing ν in the stationary noise

cases.
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On the other hand, the existence of the non-stationary noise does not affects

the estimated ν, although the estimated kurtosis increase by the existence of

the non-stationary noise.

We conclude that ν can be used as more robust indicator for evaluating

stationary non-Gaussianity than kurtosis.
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Figure 3.11: This plot shows the estimated ν and kurtosis of the simulated

noise. The red asterisk, blue circles, green square, pink stars, and black tri-

angles represent the ν and kurtosis of the Gaussian noise, the Student-t noise

with ν = 40, one with ν = 25, one with ν = 12, and the Gaussian noise with

the non-stationary noise with the 4096s length. The amplitude of the station-

ary noise corresponds the 5σ of the one of the Gaussian noise, and the rate of

the non-stationary noise is one event per one minute. The solid line represents

the νth which is calculated in the Sec. 3.2. The dashed line represents the

expected value of 3σ of the kurtosis of the stationary Gaussian noise consist

of N -samples. In this figure, each point is calculated from 65536 samples of

ñ(f).



Chapter 4

Search Method of Compact

Binary Coalescence Event

4.1 Optimal filtering

In this section, we denote the time series signal of detector output s(t) as

s(t) = h(t) + n(t) (4.1)

where h(t) is a gravitational wave strain signal and n(t) is a detector noise.

The waveform of GWs emitted from compact binary coalescence events

can be calculated by using the post-Newtonian approximation. When the

waveform of h(t) is known, a simple method described in

1

T

∫ T

0

s(t)h(t)dt =
1

T

∫ T

0

h2(t)dt+
1

T

∫ T

0

n(t)h(t)dt, (4.2)

where T is observation time, can be used for extracting the signal from the

noise. We can detect h(t) because the second term of Eq. (4.2) equals zero in

69
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the limit of T → ∞. So h(t) can be used as a filter for searching signals buried

in noise.

We discuss the optimal filter by maximizing signal-to-noise ratio in the case

when the waveform is known. We consider

S =

∫ ∞

−∞
s(t)K(t)dt, (4.3)

where K(t) is the optimal filter which should be determined. The signal-to-

noise ratio is defined as the ratio of expected value of S, when signal is present,

S and the root-mean-square value of s when the signal is absent, N . Because

〈n(t)〉 = 0, S and N become

S =

∫ ∞

−∞
〈s(t)〉K(t)dt (4.4)

=

∫ ∞

−∞
h(t)K(t)dt (4.5)

=

∫ ∞

−∞
h̃(f)K∗(f)df, (4.6)

and

N2 =

∫ ∞

−∞
〈n(t)n(t′)〉K(t)K(t′)dtdt′ (4.7)

=

∫ ∫ ∞

−∞

(∫ ∫ ∞

−∞
〈n(f)n(f ′)〉e2πi(ft−f ′t′)dfdf ′

)
K(t)K(t′)dtdt′(4.8)

=

∫ ∞

−∞

1

2
Sn(f)|K̃(f)|2, (4.9)

, where Sn(f) is the expected value of noise power spectrum.

We define

(x|y) =

∫ ∞

−∞

x̃(f)ỹ∗(f)

(1/2)Sn(f)
df. (4.10)
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The signal-to-noise ratio, S/N is given as

S

N
=

(u|h)
(u|u)1/2

, (4.11)

where u is defined as

ũ(f) =
1

2
Sn(f)K̃(f). (4.12)

When the signal-to-noise ratio is maximized, h and u/(u/u)1/2 should be par-

allel. Thus, ũ(f) is proportional to h̃(f). The filter K̃(f) is determined as

K̃(f) = A
h̃(f)

Sn(f)
, (4.13)

where A is the arbitrary constant. The matched filter is defined by Eq. (4.13).

By using Eq. (4.11) ,(4.12) and (4.13), optimal value of signal-to-noise ratio

is given as

S

N
= (h|h)1/2 (4.14)

and (
S

N

)2

= (h|h) (4.15)

= 2

∫ ∞

−∞

|h̃(f)|2

Sn(f)
(4.16)

= 4

∫ ∞

0

|h̃(f)|2

Sn(f)
. (4.17)

When the detector noise is white noise, Sn(f) is constant, and the optimal

filter is the gravitational wave strain h itself. On the other hand, when the

detector noise is colored noise, Eq. (4.13) suggests that we should give a weight

to the contribution to signal-to-noise ratio from the frequency region where the

detector noise is noisy.
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4.1.1 maximum likelihood

The likelihood function for the Gaussian noise can be described as

pG(s|θ) ∝ exp

(
−1

2

∑
j

|s(fj) − hθ(fj)|2

Sn(fj)

)
, (4.18)

where θ is the parameter vector such as the two masses, m1 and m2, of binary.

The likelihood ratio between the cases of the presence and the absence of

gravitational waves is given as

ΛG(s) =
pG(s|θ)
pG(s|0)

=
exp

(
−1

2

∑
j
|s(fj)−hθ(fj)|2

Sn(fj)

)
exp

(
−1

2

∑
j
|s(fj)|2
Sn(fj)

)
−2 log(ΛG(s)) =

∑
j

|s(fj) − hθ(fj)|2

Sn(fj)
−
∑

j

|s(fj)|2

Sn(fj)
(4.19)

Now, we consider to maximize likelihood ratio. The Gaussian likelihood

ration is rewritten by using the notation of inner product in

log(Λ(s)) = log

(
exp[−1

2
(s− h|s− h)]

exp[−1
2
(s|s)]

)
(4.20)

= −1

2
(s− h|s− h) +

1

2
(s|s) (4.21)

= (s|h) − 1

2
(h|h). (4.22)

When we set the inner product of template waveform each other, (h|h), to be

H2 and set h/H to be ĥ,

log(Λ(s)) = H(s|ĥ) − 1

2
H2 (4.23)

and

max
H

log(Λ(s)) =
1

2
(s|h)2. (4.24)
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By the above, maximizing Gaussian likelihood ratio is equivalent to compute

the square of the matched filter output.

In the next section, we discuss to modify the filter which is optimal under

the Gaussian noise environment for the non-Gaussian noise environment.

4.2 Non-Gaussian Filter

The matched filtering and the Gaussian likelihood function are optimal to

search for gravitational waves under the Gaussian noise background. However,

the non-Gaussianity may dominate in a certain time and frequency region such

as in FIG. 3.9. When the detector noise is not Gaussian, the matched filtering

method is not an optimal method.

It is difficult to modify the matched filtering method for non-Gaussian

noise, because the noise distribution does not explicitly appear in the matched

filtering formula. On the other hand, the likelihood function contains the

Gaussian distribution function explicitly. So we can construct the likelihood

function for various noise distributions when the distribution of the detector

noise is known.

We proposed a method for evaluating non-Gaussianity in Chap. 3. Our

method can provide ν as an indicator of the non-Gaussianity which is the

parameter of the Student-t distribution. The indicator ν can ensure that the

Student-t distribution is better approximation of the noise distribution than

the Gaussian distribution because Student-t distribution contains the Gaussian
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distribution as the limit of ν → ∞.

When the detector noise follows Student-t distribution, the likelihood func-

tion is modified. According to Eq. (2.6), the likelihood function for the

Student-t noise can be described as

pST (s|θ) ∝ exp

(
−
∑

j

ν(fj) + 2

2
log

[
1 +

1

ν(fj)

|s(fj) − hθ(fj)|2

Sn(fj)

])
. (4.25)

Then the log likelihood ratio between the presence and the absence of the

gravitational wave is given as

log(ΛST (s)) = log

(
pST (s|θ)
pST (s|0)

)

=
∑

j

ν(fj) + 2

2
log

 1 + 1
ν(fj)

|s(fj)|2
Sn(fj)

1 + 1
ν(fj)

|s(fj)−hθ(fj)|2
Sn(fj)

 . (4.26)

Student-t likelihood function is also optimal for the Gaussian noise because

the Student-t distribution include the Gaussian distribution at the limit of

ν → ∞. The Student-t likelihood function is expected to be optimal even in

the case of the Gaussian noise by giving large enough ν.

We adopt Eq. (4.26) as a new detection statistic instead of Eq. (4.11) and

(4.19).



Chapter 5

Pragmatic study of search

algorithm

5.1 Data Setup

We investigate the Student-t likelihood function in the case of the Student-t

noise environment..

5.1.1 Simulated noise

In order to investigate the response of the Student-t likelihood function to the

Gaussian noise, we generated and used the simulated Gaussian and Student-

t noise whose expected value of power spectrum follows the KAGRA design

sensitivity.

When the real pert, <[ñ(f)], and imaginary part, =[ñ(f)], of the noise

75
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spectrum are independent each other, the relation between the design sensi-

tivity, Sn(f), and the standard deviation, σ< and σ= of the simulated Gaussian

noise, ñ(f) can be described as

Sn(f) =
σ2
<(f) + σ2

=(f)

T
, (5.1)

where T is the data length for estimating Sn(f), and we assumed that the

mean of the <[ñ(f)] and =[ñ(f)] equal zero. When <[ñ(f)] and =[ñ(f)] are

independent each other and follow same distribution, Sn(f) can be rewritten

as

Sn(f) =


2

T
σ2 · · · (for Gaussian)

2

T

ν

ν − 2
σ2

s · · · (for Student-t)

, (5.2)

where σ, σs, and ν are defined in Eq. (2.4) and (2.8). Generated simulation

noise spectrum of the Gaussian and Student-t noise are shown in FIG. 5.1.

The suspension lines are excluded from the design sensitivity curve for simpli-

fication. The frequency regions where the lines are excluded are interpolate by

linear interpolation method.

5.1.2 GW150914

Two advanced LIGO detected GW from the coalescence of a binary black

hole whose masses are 38.8M� and 31.6M�. The 4096-second of data around

GW150914 is made public and shown in FIG. 5.2. The top panel and bottom

panel represent the time series of detector output of LIGO Hanford and Liv-

ingston, respectively. The averaged power spectrum of these time series signals
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Figure 5.1: The top and bottom panel shows the simulated noise power spec-

trum of Gaussian noise and the Student-t noise with ν = 25. Both noise

spectrums follow the KAGRA design sensitivity curve(red solid line). For

simplification, the suspension lines are excluded from the sensitivity curve.
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is shown in FIG. 5.3. The data length for the fast Fourier transform tFFT is 1s

and averaged number is 4096. The strain sensitivity is several times of 10−24 in

the most sensitive region around 200Hz. The low frequency region below 10Hz

can not be used to search for gravitational waves because this region is cut off

by the high pass filter to ensure the dynamic range of the detector signals.

These data are analyzed, and the non-Gaussianity and the time evolution

of ν of these data are obtained. The results are shown in FIG. 5.4. The time

and frequency resolution of this figure are 16s and 16Hz, respectively. The data

length T for estimating ν and quantile p are 512s and 0.99, respectively. When

T = 512, the threshold that the Gaussian hypothesis is rejected is νth = 45

with 99% confidence level. We find that the non-Gaussianity is dominant

mainly in low frequency region.

Strictly speaking, we must estimate ν of the detector noise by taking into

account of the gravitational wave signal because the existence of the gravita-

tional wave around 2048s in FIG. 5.2 and 5.4 is already known. The robustness

of ν against the non-stationary noise was investigated in Sec. 3.5. The dura-

tion of the GW150914 event which was detected by advanced LIGO is no more

than one second, and only one gravitational wave event is known to exist in

the 4096s data. The effect of the gravitational wave signal on the estimated ν

is thus negligible. When we detect the gravitational waves with large signal-

to-noise ratio which last for hundreds seconds such like gravitational waves

from binary neutron stars, we should consider the effect of the gravitational
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Figure 5.2: This plot shows the time series of the strain equivalent signal of

LIGO Hanford(top panel) and LIGO Livingston(bottom panel).
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Figure 5.3: This plot represent the averaged power spectrum of the FIG. 5.2.
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Figure 5.4: The time evolution of the estimated ν of LIGO Hanford(top panel)

and LIGO Livingston(bottom panel). In both panels, the domination of the

non-Gaussianity can be seen in the low frequency band. The threshold which

reject the hypothesis that the detector noise is Gaussian is νth = 45.
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wave signal on the estimation of ν.

5.1.3 Template Waveform

In order to demonstrate the optimal filter for non-Gaussian noise, we employ

the waveforms called post-Newtonian waveform whose masses are 38.8M� and

31.6M�. These masses are same value as the masses of the GW150914 event

obtained by LIGO and Virgo collaboration. [14].

The post-Newtonian waveform is described as

h+(f) =
1 + cos2 ι

2

(
5π

24

)1/2

η1/2G
2M2

c5r
x−7/4e−2πiftce2πiφce−iΨ(f) (5.3)

h×(f) = i cos ι

(
5π

24

)1/2

η1/2G
2M2

c5r
x−7/4e−2πiftce2πiφce−iΨ(f) (5.4)

where ι is the inclination angle, η = m1m2

(m1+m2)2
is the symmetric mass ratio,

G is the gravitational constant, M is the total mass, c is the speed of light,

x = (πGMf/c3)2/3, tc is the coalescence time, φc is the phase at tc, and Ψ(f)

is given as

Ψ(f) = − π

4
+

3

128

1

η
x−5/2

{
1 +

(
3715

756
+

55

9
η

)
x− 16πx3/2

+

(
15293365

508032
+

27145

504
η +

3085

72
η2

)
x2

+

(
38645

756
− 65

9
η

)[
1 +

3

2
ln

(
x

x0

)]
πx5/2

+

[
11583231236531

4694215680
− 640

3
π2 − 6848

21
γE − 3424

21
ln(16x)

+

(
−15737765635

3048192
+

2255

12
π2

)
η +

76055

1728
η2 − 127825

1296
η3

]
x3

+

(
77096675

254016
+
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where γE is Euler-Mascheroni constant.
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Figure 5.5: This figure shows the 3.5 order Post-Newtonian waveform from the

binary system whose masses are 38.8M� and 31.6M�. This waveform includes

the frequency components from 37Hz to 64.3Hz.

FIG. 5.5 shows the 3.5 ordered post-Newtonian waveform from the binary

system whose masses are 38.8M� and 31.6M�. This time series waveform is

generated by the inverse Fourier transform of the Eq. (5.3), (5.4) and (5.5),

and includes frequency components from 37Hz to 64.3Hz.

5.1.4 Optimal filter configuration

In order to demonstrate the filter which is optimized for Student-t noise model,

the time evolution of the filter output ρ(t) is calculated with the advanced
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LIGO observational data which includes GW150914. The ρ(t) is calculated as

ρ(t) = Λ(s(f)e2πift) (5.6)

where s(f) is the spectrum of the detector output and Λ is defined in Sec. 4.2.

The upper and lower frequency of the template waveform and the integra-

tion frequency range of the optimal filters should be limited when we apply the

optimal filter. The upper frequency is decided from the frequency at the coa-

lescence time , because the Post-Newtonian waveform is contains only inspiral

phase. When the masses of binary are 38.8M� and 31.6M�, the frequency at

the coalescence time is 64.3Hz. The lower frequency is decided from the power

spectrum of the detector noises. The power spectrum of the LIGO detectors

noise whose frequency region is from 30Hz to 65Hz are shown in FIG.5.6.

In the noise of both detector, there are the loud line noise around 35Hz.

Moreover the contribution of the low frequency band to signal-to-noise ratio is

expected to be smaller than the that of the a few hundred Hertz band because

the detector noise is rapidly increasing at the low frequency region(see FIG.

5.3). We adopt the lowest frequency of the template waveform as 37Hz in

order to avoid the loud line. So the frequency band of the our optimal filter is

from 37Hz to 64.3Hz. There also are another loud lines around 41Hz(Hanford

only), 46Hz(Hanford only), and 60Hz(Hanford and Livingston). For simplicity,

we exclude 1Hz-width around these loud line noise from the integration of the

optimal filter though the line noise should be removed after considering the

central frequency, amplitude, and Q-value for earning signal-to-noise ratio.
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The duration of the template waveform we generated is about 0.15s. ρ(t)

is computed by using 32 seconds of data and template waveform with zero

padding. For excluding possible edge effects, the data is overlapped for 16

seconds and only the middle 16 seconds of the calculated ρ(t) are used. The

schematic picture of the data flow is shown in FIG. 5.7.

5.2 Event Candidate

5.2.1 simulated Gaussian noise

In order to investigate that the response for the stationary Gaussian noise of

the Student-t filter is same as one of the Matched filter, we apply the Student-t

filter and Gaussian matched filter for the simulated Gaussian noise which is

explained in Sec. 5.1.1.

The output, ρ(t), of the Gaussian matched filter and the Student-t likeli-

hood ratio for the simulated Gaussian noise are shown in FIG. 5.8. In order

to compare the ρ(t) of the Gaussian and Student-t filter, we normalize ρ(t) as

ρ̂(t) =
ρ(t) − µρ

σρ

, (5.7)

where µρ and σρ are the mean and standard deviation of the ρ(t), respectively.

The difference of the normalized output of the Gaussian filter, ρG(t), and

Student-t filter, ρST(t) is defined as

ρdiff(t) = ρ̂ST(t) − ρ̂G(t) (5.8)
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Figure 5.6: This plot shows the noise power spectrum of LIGO Hanford(top

panel) and Livingston(bottom panel) whose frequency region is from 30Hz

to 65Hz. There are the loud lines around 30Hz and 60Hz in the data of

both detectors. In the data of Hanford, there are the loud lines around 41Hz

and 46Hz. These loud lines exclude the integration of matched filter and

non-Gaussian filter because the loud noise decrease signal-to-noise ratio of

gravitational wave events.
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Figure 5.7: The schematic of the time shifted matched filtering

and is shown in FIG. 5.9. The ρdiff follows a Gaussian distribution whose mean

and standard deviation are −1.11 × 10−8 and 3.83 × 10−5, respectively. The

detection threshold is often set as ρ = 8 or 10. From the above, the difference

between the ρST and ρG is small enough than the detection threshold. Thus,

the Student-t filter can be used instead of the Gaussian filter even though the

detector noise follows a Gaussian distribution.

5.2.2 Simulated Student-t noise

In order to compare the detection efficiency for the non-Gaussian noise of

Student-t filter with one of the Gaussian matched filter, we apply the Student-

t filter and Gaussian matched filter for the simulated Student-t noise with

ν = 25. The filter output is computed for Student-t noise, ρnoise, and injected
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Figure 5.8: The top panel shows the normalized likelihood ratio ρ̂(t) for the

simulated Gaussian noise which follows the KAGRA design sensitivity shown

in FIG. 1.5. Red solid line and blue dashed line represent ρ̂(t) of the Student-t

filter and Gaussian filter, respectively. The bottom panel shows the ρ̂ST(t) −

ρ̂G(t).
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Figure 5.9: This plot shows the histogram of the residual of ρST and ρG.

The sample number of the histogram is 262144. The residual follows the

Gaussian distribution whose mean and standard deviation are −1.11 × 10−8

and 3.83 × 10−5, respectively. The residual of ρST and ρG is small enough

because Student-t filter involve the Gaussian filter as ν → ∞
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gravitational wave signals from binary systems which is explained in Sec. 5.1.3,

ρgw.

The top panel and bottom panel of FIG. 5.10 show the histograms of out-

put, ρ, of the Student-t filter and Matched filter, respectively. In both panel,

the blue histogram and the red histogram represent the ρnoise and ρgw, respec-

tively. The entry numbers of the histogram are 261120 (for ρnoise) and 1024

(for ρgw and the expected signal-to-noise ratio of injected signal is equal to 3.

The receiver operating characteristic curve can be computed from the FIG.

5.10 When we set the detection threshold as ρth, the false alarm rate and

detection efficiency can be defined as

pfar(ρth) = Nρnoise≤ρth
/Nnoise, (5.9)

and

peff(ρth) = Nρgw≤ρth
/Ngw, (5.10)

where Nρnoise≤ρth
and Nρgw≤ρth

represent the number of greater than ρth out of

ρnoise and ρgw, respectively, and Nnoise and Ngw are the entry number of the

blue and red histogram, respectively.

In FIG. 5.11, the blue and red solid line represents the receiver operating

characteristic curve of Student-t filter and Matched filter respectively. Black

solid line shows the difference between the detection efficiency of Student-t

filter and one of the Gaussian matched filter at the same false alarm rate. The

Student-t filter provides more than 1%-improvement of the detection efficiency

at 1e-4 of the false alarm rate.
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Figure 5.10: The histogram of ρ̂(t) of the Student-t filter(top panel) and the

Gaussian matched filter(bottom panel) in the case of Student-t noise whose

ν equal 25. The blue and red histogram in the both panel represent the

ρ̂(t) of the background noise and the injected gravitational wave signal from

binary coalescence event whose two masses and expected signal-to-noise ratio

are 38.8M�, 31.6M�, and 3, respectively.
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Figure 5.11: The histogram of difference between the ρ̂ST and ρ̂G. The blue

and red histogram represent the ρ̂ of the background noise and the injected

gravitational wave event.
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5.2.3 GW150914

The optimal filter for the Student-t noise applied to the detector signal around

GW150914 and output of optimal filter is shown in FIG. 5.12.

FIG. 5.12 shows the time series of optimal filter output for the detector

data of LIGO at Hanford(top panel) and at Livingston(bottom panel) The

template waveform is 3.5 PN order.

According to [60], the strain amplitude of GW150914 is maximum at

2048.39s of the axis label of 5.12. The time when the ρ(t) is maximum is

2048.383606s.

The gravitational wave waveform of post-Newtonian is less accurate than

the numerical relativity waveform which is used by advanced LIGO search espe-

cially around coalescence time. The results of ρ(t) for various post-Newtonian

order are shown in FIG. 5.13. The red, green, blue, pink, light blue, and yellow

points represent ρ(t) of Hanford LIGO data with the 1.0, 1.5, 2.0, 2.5, 3.0, and

3.5 post-Newtonian waveform, respectively. The x axis represents the elapsed

time from 2048s of the FIG. 5.12.

The coalescence time tc differs about 0.05s with different post-Newtonian

order of the waveform. Our optimal filter can detect the GW150914 event at

the correct time within the accuracy of the post-Newtonian waveform.

The statistical significance, ρ̂, of the GW150914 can be estimated from the

mean, µρ, and standard deviation, σρ, of the ρ(t) when the gravitational wave
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Figure 5.12: This plot shows the time series of the optimal filer output ρ(t)

with the Hanford LIGO(top panel) and the Livingston LIGO(bottom panel)

of data around the GW150914.
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Figure 5.13: This plot shows the ρ(t) of the data of Hanford LIGO around

the coalescence time tc with the various post-Newtonian waveform. The red,

green, blue pink, light blue, and yellow points represent the ρ(t) with the 1.0,

1.5, 2.0, 2.5, 3.0 and 3.5 post-Newtonian waveform, respectively.
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Table 5.1: The mean and standard deviation of the ρ(t)

Hanford Livingston

µρ,ST 1.235e-12 1.069e-12

σρ,ST 1.646e-24 1.333e-24

ρ̂ST(t) 43.726 18.101

µρ,G 9.710e-13 9.188e-13

σρ,G 9.955e-25 9.692e-25

ρ̂G(t) 43.720 18.155

is absence. The ρ̂ is defined as

ρ̂i =
ρGW150914,i − µρ,i

σρ,i

, (5.11)

where i represents the Gaussian(G) or Student-t(ST) model. We regard the

detector output of the LIGO data excluding 1 second around the time occurring

GW150914 as the data in which the gravitational wave is absence.

There are no promising difference between the matched filter method and

Student-t filter because the ν is not large enough for rejecting Gaussian as-

sumption around the time and frequency of GW150914 and the signal-to-noise

ratio of GW150914 is large.

Table. 5.1 shows the µρ, σρ, and ρ̂. Our filter which is optimized for

Student-t noise can detect the GW150914 with the 43.7σ(Hanford) and 18.1σ(Livingston)

of the statistical significance.
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Conclusion

We proposed a method to characterize the non-Gaussianity of GW detector

noise. Namely, we introduce Student-Rayleigh distribution to characterize

possible non-Gaussianity of data. Here, the degrees of freedom ν of the distri-

bution is found to be useful to quantify degree of non-Gaussianity. We use ν

as a characteristic parameter, that represents weight of tail of detector noise.

We calculated confidence interval of ν and threshold below which we reject the

Gaussian hypothesis. We characterize the non-Gaussianity in realistic detector

noise quantitatively.

The existence of non-Gaussian noise component in realistic detector noise

is also clarified by our method with threshold and confidence interval. The

threshold for rejecting Gaussian noise is evaluated for various data length

T . In the case of T = 4096s and ν̂ = 25, the 99% confidence interval is

15.45 < ν < 27.29.
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In this work, we show the detection method for non-Gaussian noise using

ν and the accuracy of ν. This method revealed continuous and transient

non-Gaussian components in the LIGO data, by estimating the degree of non-

Gaussianity of the detector noise every 16Hz and 1024s.

The degree of non-Gaussianity is related with the origin of noise source.

The characteristics of non-Gaussianity, such as power, frequency and/or time

evolution, are also different among noises of different origins, as shown in the

spectrogram Fig. 9. Robustness for outliers derived from non-stationary noise

of our method can be adjusted by changing quantile and p. The method using

quantile is more robust for outlier than the one using the whole of the noise

distribution such as χ2-fitting.

Our method can be used for revealing stationary feature of the detector

noise. So ν can provide information of noise status which is different from the

one provided by the methods for non-stationary noise. When all deviations

from Gaussianity are regarded as non-stationarity, it is difficult to identify

mechanisms that cause stationary but non-Gaussian noises. Our method and

methods for investigating transient noise are complementary to each other for

evaluating conditions of the detector noise because our method can investigate

stationary non-Gaussianity of detector noise. Regarding search for GWs we

adopt the Student-t likelihood function as the optimal filter for Student-t noise

model instead of matched filtering method. Student-t likelihood function is

determined with a parameter ν which is estimated from the detector signals.



99

The Student-t filter is applied for simulated Gaussian noise, simulated Student-

t noise, and the LIGO observational signal around GW150914. We compared

output of Student-t filter with one of Matched filter. The difference of the

output of the Student-t filter and Matched filter for Gaussian noise are the

same within 3.83× 10−5σ. For the stationary Student-t noise, the ROC curve

of the Student-t filter has improved 1% compared to that of matched filter

at 10−4-false alarm probability. The Student-t filter is provide a significance

equivalent to the matched filter result for the GW150914 event though the non-

Gaussianity of the detector noise around the GW150914 event is not dominant

enough. We conclude that the Student-t filter can be used as a search method

instead of the matched filter even though the detector noise is Gaussian noise.
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