1 ITRF94 coordinate system

Reference site: http://vldb.gsi.go.jp/sokuchi/surveycalc/main.html

Ellipsoid	GRS80
Semi-major axis	6378137 m
Flattening	$1 / 298.257222101$
Semi-minor axis	$b_{G R S 80}=a_{G R S 80}\left(1-f_{G R S 80}\right)$

Height: $H_{e}=H_{o}+H_{g}$ where

$$
H_{e}: \text { ellipsoid height }
$$

$H_{g}:$ geoid height $=$ height of geoid surface from GRS80 surface.
H_{o} : orthometric height $=$ height from geoid surface

The Geospatial Information Authority of Japan gives H_{g} from (B, L) at http://vldb.gsi.go.jp/sokuchi/surveycalc/main.html.
B and L are the latitude and the longitude in the ITRF94 geodesic coordinate system. The 3-D international terrestrial reference system (X, Y, Z) of the position specified by the ITRF94 geodesic coordinate (B, L) are computed by

$$
\begin{align*}
& X=\left(\frac{a_{G R S 80}^{2}}{\sqrt{a_{G R S 80}^{2} \cos ^{2} B+b_{G R S 80}^{2} \sin ^{2} B}}+H_{e}\right) \cos B \cos L, \tag{1}\\
& Y=\left(\frac{a_{G R S 80}^{2}}{\sqrt{a_{G R S 80}^{2} \cos ^{2} B+b_{G R S 80}^{2} \sin ^{2} B}}+H_{e}\right) \cos B \sin L, \tag{2}\\
& Z=\left(\frac{b_{G R S 80}^{2}}{\sqrt{a_{G R S 80}^{2} \cos ^{2} B+b_{G R S 80}^{2} \sin ^{2} B}}+H_{e}\right) \sin B \tag{3}
\end{align*}
$$

The Geospatial Information Authority of Japan gives (X, Y, Z) from (B, L) at http://vldb.gsi.go.jp/sokuchi/surveycalc/main.html.

LALDetectors.h requires the azimuth angule $\zeta_{G R S 80}$ and the altitude angle $\mathcal{A}_{G R S 80}$ of the arms. The LALDetector.h document says " The c LALFrDetector structure stores the directions along the two arms of an interferometer in an altitude/azimuth representation with respect to the local tangent plane to the reference ellipsoid, known as the local horizontal. The altitude \mathcal{A} is the angle the direction vector makes with the horizontal, $\mathcal{A}>0$ meaning above horizontal, $\mathcal{A}<0$ below. The azimuth angle ζ is found by projecting the direction onto the local horizontal plane, then measuring the angle clockwise from North to this projected direction.".

Define the following vectors. \vec{u} is the unit vector from the BS to the X-End. \vec{v} is the unit vector from the BS to the Y-End. \vec{n} is the normal unit vector to
the local horizontal at the BS. \vec{m} is the unit vector on the local horizontal at the BS and directed to the local North. \vec{l} is the unit vector on the local horizontal at the BS and directed to the local East $(\vec{l}=\vec{m} \times \vec{n})$.

Then the azimuth angule $\zeta_{G R S 80}$ and the altitude angle $\mathcal{A}_{G R S 80}$ are defined by

$$
\begin{align*}
& \vec{n}=(\cos L \cos B, \sin L \cos B, \sin B), \tag{4}\\
& \vec{m}=(-\cos L \sin B,-\sin L \sin B, \cos B), \tag{5}\\
& \vec{l}=(\sin L,-\cos L, 0), \tag{6}\\
& \sin \left(\mathcal{A}_{G R S 80, X-a r m}\right)=\vec{n} \cdot \vec{u}, \tag{7}\\
& \tan \zeta_{G R S 80, X-a r m}=\frac{\vec{l} \cdot \vec{u}}{\vec{m} \cdot \vec{u}}, \tag{8}\\
& \sin \left(\mathcal{A}_{G R S 80, Y-a r m}\right)=\vec{n} \cdot \vec{v}, \tag{9}\\
& \tan \zeta_{G R S 80, Y-a r m}=\frac{\vec{l} \cdot \vec{v}}{\vec{m} \cdot \vec{v}} \tag{10}
\end{align*}
$$

For KAGRA, it turns out that $\zeta_{G R S 80, X-a r m}>0$ (X-arm is directed to the local North East) and $\zeta_{G R S 80, Y-a r m}<0$ (Y-arm is directed to the local North West). Then it was checked that $\zeta_{G R S 80, X-a r m}-\zeta_{G R S 80, Y-a r m}-\pi / 2=4 \times 10^{-6}$ radians.

The locations of the KAGRA mirrors are given by Prof. Yoshio Saito (the KAGRA project manager) as the document JGW-G140105-v1 (2014) and shown in the Tables 1, 2 , and 3 .

Table 1: Beam Splitter.

B [ddmmss]	L [dddmmss]	$H_{e}[\mathrm{~m}]$	$H_{g}[\mathrm{~m}]$	$H_{o}[\mathrm{~m}]$
362442.69722	1371821.44171	414.181	41.0464	373.135
B [radians]	L [radians]	$X[\mathrm{~m}]$	$Y[\mathrm{~m}]$	$Z[\mathrm{~m}]$
0.6355068497	2.396441015	-3777336.024	3484898.411	3765313.697

Table 2: X-End.

B [ddmmss]	L [dddmmss]	$H_{e}[\mathrm{~m}]$	$H_{g}[\mathrm{~m}]$	$H_{o}[\mathrm{~m}]$
362531.18475	1372007.07060	424.407	41.1788	383.228
B [radians]	L [radians]	$X[\mathrm{~m}]$	$Y[\mathrm{~m}]$	$Z[\mathrm{~m}]$
0.6357419239	2.396953119	-3778473.700	3482367.772	3766522.541

Table 3: Y-End.

B [ddmmss]	L [dddmmss]	$H_{e}[\mathrm{~m}]$	$H_{g}[\mathrm{~m}]$	$H_{o}[\mathrm{~m}]$
362607.96387	1371721.48451	403.934	40.8740	363.06
B [radians]	L [radians]	$X[\mathrm{~m}]$	$Y[\mathrm{~m}]$	$Z[\mathrm{~m}]$
0.6359202341	2.396150335	-3775170.073	3484932.092	3767422.582

Table 4: X-arm: $\vec{U}=$ (X-end) - (Beam Splitter)

$U_{x}[\mathrm{~m}]$	$U_{y}[\mathrm{~m}]$	$U_{z}[\mathrm{~m}]$	$\|\vec{U}\|[\mathrm{m}]$
-1137.676	-2530.639	1208.844	3026.507
\vec{u}_{x}	\vec{u}_{y}	\vec{u}_{z}	$\|\vec{u}\|$
-0.3759040	-0.8361583	0.3994189	1.0000000
$\mathcal{A}_{G R S 80}$ [radians]	$\zeta_{G R S 80}$ [radians]	-	-
0.0031414	1.054113	-	-

Table 5: Y-arm: $\vec{V}=$ (Y-end) - (Beam Splitter)

$V_{x}[\mathrm{~m}]$	$V_{y}[\mathrm{~m}]$	$V_{z}[\mathrm{~m}]$	$\|\vec{V}\|[\mathrm{m}]$
2165.951	33.681	2108.885	3023.222
\vec{v}_{x}	\vec{v}_{y}	\vec{v}_{z}	$\|\vec{v}\|$
0.7164378	0.01114076	0.6975620	1.0000000
$\mathcal{A}_{G R S 80}$ [radians]	$\zeta_{G R S 80}$ [radians]	-	-
-0.0036270	-0.5166798	-	-

