My work in 2016 6-3

Hiroki Tanaka

Heat load test

We cooled down the cryostat.

 $|dT_{A,F,H,J}/dt|<0.01 (K/h)$

heat load test (4th)

 \cdot $T_{\text{mass}} - T_{\text{copper}} = 1.6 \text{K}$

On the internet, I found the aluminium tape can prevent only 97% of the radiation (So 3% (about 25mW) goes through the tape).

heat load test(4th)

- · There is an "extra" heat load($P_{\text{extra}}(W)$).
- If I give the heater 0.25W, the real heat load is $0.25+P_{\text{extra}}(W)$.
- · 0.25+ $P_{\rm extra}$ is larger than 0.25, so if $T_{\rm mass}$ is low enough in this condition (P=0.25+ $P_{\rm extra}$), it means that $T_{\rm mass}$ is low enough when the real heat load is 0.25W, so it also means that bKAGRA requirement is satisfied.
- · So I started the heat load test.
- · I will show the result in the next meeting.

homework

The temperature of sensor F should be 77.3K.

When I used the current supply and the multimeter, it was about 77.6K.

It was because I used the linear approximation.

I used the Chebyshev's polynomial.

homework

by LS218

by measuring voltage

Chebyshev's polynomial

 $T_{F}=77.35(K)$

```
python1.py
import matplotlib.patches as mpatches
             import matplotlib.pyplot as plt
             import numpy as np
             #data1=np.loadtxt("warming.txt")
             a8=60.024600
             a1=-39.967946
             a2=1.699918
            a3=1,566086
             a4=0.871263
             a5=0,333032
             a6=0.055595
             a7=-0.038514
             a8=-0.062121
             a9=-0.024100
             a10=-0.027277
             all=-0.003346
             a12=-0.013001
             z=1.82674
             zl=0.9865009772
             zu=1.1280166
             k=((z-zl)-(zu-z))/(zu-zl)
             u=np.arccos(k)
             T0=a0*np.cos(0*np.arccos(k))
             T1=a1*np.cos(1*np.arccos(k))
             T2=a2*np.cos(2*np.arccos(k))
             T3=a3*np.cos(3*np.arccos(k))
            T=a\theta*np.cos(\theta*np.arccos(k))+a1*np.cos(1*np.arccos(k))+a2*np.cos(2*np.arccos(k))+a3*np.cos(3*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np.arccos(k))+a4*np.cos(a*np
                        cos(4*np.arccos(k))+a5*np.cos(5*np.arccos(k))+a6*np.cos(6*np.arccos(k))+a7*np.cos(7*np.arccos(k))+a8*np.cos(8*
                         np.arccos(k))+a9*np.cos(9*np.arccos(k))+a10*np.cos(10*np.arccos(k))+a11*np.cos(11*np.arccos(k))+a12*np.cos(12*
                         np.arccos(k))
             x=[1,2,3,4,5]
            y=[T0,T1,T2,T3,T]
            #plt.legend(loc="best")
#plt.xlabel("tempF[K]")
             plt.plot(x,y)
             #plt.ylabel("deltatemp[K]")
             #plt.xlim(0.5,10)
             #plt.ylim(180,230)
            plt.grid()
            plt.show()
```

Future work

- We will finish the heat load test this week.
- After this test, we will start the Q measurement of one fiber prototype again.

"previous" heat load test

After cooling down

*Calibration is incorrect.

heat load test (4th)

『断熱と遮熱の違い』

よく断熱と遮熱を同じように考える方がいますが、断熱と遮熱は違うものです。断熱は「対流」 「伝導」による熱移動に対して大変有効なものです。断熱材は空気の働きで熱の移動を遮断しま す。空気は熱伝導性が低い特性がある反面、対流を起こし熱を移動させる性質があります。断熱材 はじっとして動かない空気(静止空気)を使い、対流や伝導による熱の移動を遮断します。 対流による熱移動の例として、空気をたくさん含んだダウンジャケットは寒いスキー場でも体を 暖かく包んでくれます。

伝導の場合は、熱くなった鍋を空気を含んだ乾いたタ オル使って掴むことができます。ちなみに濡れたタオ ルで掴むとすぐさま熱くなり掴むことができません。 このように空気(静止空気)を利用した断熱材は対流 と伝導の熱移動に効果があります。

遮熱は「輻射」による熱移動に対して大きな効果があります。遮熱には金属幕を使用しますが、中でもアルミは輻射熱(電磁波)の反射に優れ、最大97%カットします。(一般の断熱材は反射率10%程度) 遮熱の

効果として太陽からの輻射熱の反射が最も期待されま

す。

http://www.e-lifetech.com/syanetu-towa.html

heat load (4th)

heat load test(3th)

Result (3th)

(The graph is shown on the next slide)

Heater[W]	Tmass[K]	Tblade	Tcopper	hanger	Inner shield	dTmass/ dt[K/h]	dTblade/dt	dTcopper/ dt	dThanger/ dt	dTshield/dt
0	7.18	7.08	6.35	6.97	5.97	0.016	0.023	0.022	0.019	0.023
0.045	11.38	9.99	6.74	11.24	5.92	-0.002	-0.003	-0.003	-0.002	-0.003
0.09	16.21	13.62	7.76	15.49	6.32	0.001	0.001	0.009	-0.001	0.01
0.245	20.27	16.92	8.75	19.37	6.58	-0.004	0.002	0.008	0	0.01
0.5	28.01	22.55	10.5	24.64	7.15	-0.002	0.001	0.003	0.001	0.009
1	36.64	29.03	13.14	33.71	8.69	-0.016	0.008	0.004	0.01	-0.004

We confirmed the speed of all temperatures became constant.