🗖 Goal

① Estimate the sensitivity of the ACC on(and off) the IP,

by comparing to L-4C geophone sensitivity, and 3 channel correlation analysis.

→ Get the ACC's sensitivity limit at high frequencies.

② Confirm the controllability with the blending, using the LVDTs and the ACCs.(mostly in same configuration with Sekiguchi-san's)

 \rightarrow This test is to be done at BS hanging test.

Due date

Mid of June, ~2016.6.18

→ Due date was changed to 2016.5.27

Participants (mainly)

Joris, Fabian, Takahashi-san, Hirata-san, Fujii,

Updated on 2016.6.3

Status report : about the Monolithic Accelerometers(ACCs) Test

What is done, at this stage ;

- * Signals from 3 ACCs, 1 Geophone are monitored. (LVDTs are to be added within this month.)
- * building the digital system, medm screen for this test. Excitation is able to be injected.
- * Cups and metal board (not wooden board) are installed under the IP legs.
- * Resonance frequency of the IP translational mode is tuned at ~440 mHz.
- * ACC signals are calibrated.
- * ACC-LVDT gains are increased.

I agree they are calibrated, but be sure to use my measurements as your LVDT readout seems not performing well, most probably because of the non-symmetry of the powersupply

* All the geophone, the accelerometers were replaced on a optical table.

before 2016.5.25

Nothing is suspended on the Top GAS.

Do you think you can do this before LAPP?

* Proper air shields, wanted by Joris and me, are delivered, on 2016.6.3.
 → I would like to install them, and to see the sensitivities at low frequencies.

🗖 To do list

- * Tune the output of the ACCs
- * Calibration (more precisely)
- * Install their "Air shields" (* ACC TF meas.) *

🗖 LVDTs

- * Install to the IP stage, Cabling(圧着)
- * Calibration

*

Filters

* Confirm and install the input filters of the ACCs and Geophones

* install servo filters for the blending.

*

Others

- * Do actuator diagnalization
- * Measure force TFs of the IP
- * Stepper motor working confirmation(動作確認)
- * Install a geophone on the ground(to be confirmed).

(Something might be missed. Some A/I can be added.)

* reviewing meeting * Changing LVDT gain **Schedule** at U Totama * ACC H3 calibration * Confirming some resistance Thu Sun Mon Wed Fri Tue Sat * MEDM screen * MEDM screen 2016.5.19 2016.5.20 2016.5.21 2016.5.16 2016.5.18 2015.5.15 2016.5.17 modification modification * Replacing 2015.5.22 2016.5.23 2016.5.24 2016.5.25 2016.5.26 2016.5.27 2016.5.28 ACC's positions * iPR3 TF meas. **Due date** * ACC checking. * TF, spectra measurem-2015 5.29 2016.5.30 2016.5.31 2016.6.1 2016.6.2 2016.6.3 2016.6.4 * ACC_H1, H2ent on a optical table. Calibration * Putting a temporary 2015.6.5 2016.6.6 2016.6.7 2016.6.8 2016.6.9 2016.6.10 2016.6.11 * Q (w/o ctrl) air shield. * Installing 2015.6.12 2016.6.13 2016.6.14 2016.6.15 2016.6.16 2016.6.17 2016.6.18 "Air shields" ? -Due date What would be done by type B team. Is team B doing anything before the hanging test or are they too busy? * Installing Air shields * Installing LVDT * Controlling test

Status report : about the Monolithic Accelerometers(ACCs) Test

- **I** Next step for the next week:
 - * Tune the outputs the ACCs by adjusting the "LVDT cards" .
 - * Calibrate the ACCs more precisely with using aluminum foil etc.
 - * if the LVDTs would be returned, install and do cabling, calibration.

To be investigated, found in this week ;

* the natural frequencies of the ACCs : all the freq. are shifted stiffer, in some reason.

Jan.	May
ACC1 : 0.46 Hz →	0.6 Hz
ACC2 : 0.89 Hz →	~ 1.4 Hz
ACC3 : 1.0 Hz \rightarrow	~ 1.5 Hz

This is really untrue. You did by hand and timed the modes; it has to do with the LVDT readout and not with the mechanics.

Settings and Results

ACC-LVDT gains, etc.

natural frequencies, Q factors of accelerometers

Tilt calibration

- Spectra measurement on ACC-LVDT
- **I** sensitivities, noises of accelerometers

Setting / ACC-LVDT gains, etc.

(Measured values by a multi-meter)

Setting / ACC-LVDT gains, etc.

At connection 3

Resistance [Ohm]	1-6 pin	2-7 pin	3-8 pin	4-9 pin	5 pin
Primary port	O.F.	86.8	86.0	97.1	O.F.
Secondary port	O.F.	42.2	43.1	42.4	O.F.
	(Not used)				(Not used)

At connection $1 \rightarrow 1$ With Power supply, With modulation

~			(Not used)		(Not used)
→	Resistance [Ohm]	1-6 pin	2-7 pin	3-8 pin	4-9 pin
	ACC_H1	966	O.F.	O.F.	O.F.
	ACC_H2	972	O.F.	O.F.	O.F.
	ACC_H3	971	O.F.	O.F.	O.F.

2With Power supply, Without modulation

Resistance [Ohm]	1-6 pin	2-7 pin	3-8 pin	4-9 pin
ACC_H1	966	O.F.	185.1	O.F.
ACC_H2	972	O.F.	198.2	O.F.
ACC_H3	972	O.F.	212.9	O.F.

③Without Power supply, Without modulation

Resistance [Ohm]	1-6 pin	2-7 pin	3-8 pin	4-9 pin
ACC_H1	994	O.F.	4740	O.F.
ACC_H2	993	O.F.	4650	O.F.
ACC_H3	994	O.F.	4700	O.F.

Setting / ACC-LVDT gains, etc.

ref : <u>http://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=4798</u>]

(Not used)

Func. Generator					
4.3 Vpp, 10 kHz					
Primary port	1 pin	2 pin	3 pin	4 pin	5 pin
Vpp , 10 kHz	1.36	4.16	4.16	4.08	0.240
Primary port	6 pin	7 pin	8 pin	9 pin	
Vpp, 10 kHz	1.36	4.08	4.08	4.08	

→ According to below formula, current amp-gain is around <u>1501</u>. INA103 amp: $G = 1 + \frac{6k\Omega}{R_G}$

Results / Natural frequencies, Q factors of ACCs

- From decay signals,
- * natural frequencies and
- * Q factors

of the ACCs, with and without air shield, are obtained. Below formulae are used.

$$f(t) = A_1 \exp\left(-\frac{t}{\tau_{e,1}}\right) \sin(2\pi f_1 t + \varphi_1) \quad \text{or}$$

$$f(t) = A_1 \exp\left(-\frac{t}{\tau_{e,1}}\right) \sin(2\pi f_1 t + \varphi_1) + A_2 \exp\left(-\frac{t}{\tau_{e,2}}\right) \sin(2\pi f_2 t + \varphi_2) + x_0.$$

 $Q = \pi f_0 \tau_e$

As results shown in next some slides, natural frequencies at steady phase are different from the ones at non-steady phase.

$$f(t) = A_1 \exp\left(-\frac{t}{\tau_{e,1}}\right) \sin(2\pi f_1 t + \varphi_1) + A_2 \exp\left(-\frac{t}{\tau_{e,2}}\right) \sin(2\pi f_2 t + \varphi_2) + x_0$$

$$\overline{Q = \pi f_0 \tau_e}$$

Without Air Shield

	f_0 [Hz]	$ au_{ m e}$ [sec]	Q
1st	0.537	2.65	4.47
2nd	0.607	40.4	77.1

*Linear range : from about -5,000 to 5000 ct

$$f(t) = A_1 \exp\left(-\frac{t}{\tau_{e,1}}\right) \sin(2\pi f_1 t + \varphi_1) + A_2 \exp\left(-\frac{t}{\tau_{e,2}}\right) \sin(2\pi f_2 t + \varphi_2) + x_0.$$

$$Q = \pi f_0 \tau_e$$

Without Air Shield

	<i>f</i> ₀ [Hz]	$ au_{ m e}$ [sec]	Q
1st	0.90	0.91	2.59
2nd	1.54	35.5	172

*Linear range : from about -3,000 to 6000 ct

$$f(t) = A_1 \exp\left(-\frac{t}{\tau_{e,1}}\right) \sin(2\pi f_1 t + \varphi_1) + A_2 \exp\left(-\frac{t}{\tau_{e,2}}\right) \sin(2\pi f_2 t + \varphi_2) + x_0.$$

$$Q = \pi f_0 \tau_e$$

With Air Shield					
	f_0 [Hz]	$ au_{ m e}$ [sec]	Q		
1st	0.545	1.56	2.67		
2nd	0.609	34.8	66.5		

*Linear range : from about -5,000 to 5000 ct

$$\begin{aligned} f(t) &= A_1 \exp\left(-\frac{t}{\tau_{e,1}}\right) \sin(2\pi f_1 t + \varphi_1) + A_2 \exp\left(-\frac{t}{\tau_{e,2}}\right) \sin(2\pi f_2 t + \varphi_2) + x_0. \\ \hline Q &= \pi f_0 \tau_e \end{aligned}$$

With Air Shield

	<i>f</i> ₀ [Hz]	$ au_{ m e}$ [sec]	Q
1st	0.897	1.23	3.47
2nd	1.55	22.9	112

*Linear range : from about -3,000 to 6000 ct

I think these measurements were good training, but before you fix the LVDT powersupply, I think all has to be redone. It looks so non-linear to me (time signals ACCs, strange Q measurements with different f_0's. I think the above 1 Hz peaks you see in spectra is really non-physical but artifact from LVDT non-linearity

$$\begin{aligned} f(t) &= A_1 \exp\left(-\frac{t}{\tau_{e,1}}\right) \sin(2\pi f_1 t + \varphi_1) + A_2 \exp\left(-\frac{t}{\tau_{e,2}}\right) \sin(2\pi f_2 t + \varphi_2) + x_0. \\ \hline Q &= \pi f_0 \tau_e \end{aligned}$$

With Air Shield

	f_0 [Hz]	$ au_{ m e}$ [sec]	Q
1st	0.99	4.28	13.3
2nd	1.31	18.3	75.0

*Linear range : from about -7,400 to 5000 ct

Results / Natural frequencies, Q factors of ACCs

Natural frequencies and

Q factors at non-steady phase, in my measurement, seem to be consistent with previous measurement which was done by Joris. (Except for ACC_H1.) <u>http://klog.icrr.u-tokyo.ac.jp/osl/index.php?r=639</u>

Then, the parameters shown in this table are obtained, to do below slides' calculation.

Calibration factor is calculated as

Calibration factor_{LVDT}
$$\equiv \frac{X_{mass}}{V_{LVDT}} = \frac{\alpha * g / \omega_0^2}{V_{LDVT}} [mm/V]$$

, where a is a tilt angle of the accelerometer, g is gravitational acceleration, w0 is a natural frequency of the accelerometer.

Results / Tilt calibration, which is done on 2016.5.25

Results / Transfer functions from LVDT outputs to displacement

Results: Spectra measured on 2016.6.2

BUT, my calibration factors might NOT be correct, with comparing to the Geophone,,.

For the time being, I changed the calibration factors to right ones in below,,.

Results: noises of the accelerometers / 3ch correlation analysis

<u>Results: noises of the accelerometers / 3ch correlation analysis</u>

Settings and Results

ACC-LVDT gains, etc.

natural frequencies, Q factors of accelerometers

Tilt calibration

- Spectra measurement on ACC-LVDT
- **I** sensitivities, noises of accelerometers

Results: Spectra measured on IP, BEFORE increasing ACC-LVDT gain.

Results: Spectra measured on IP, AFTER increasing ACC-LVDT gain.

Results: Spectra measured on optical table, AFTER increasing ACC-LVDT gain.

