KAGRAにおける腕共振器鏡の 大型防振装置の開発

発表者: 奥富弘基(総研大天文)

国立天文台^A, 東大宇宙線研^B, 東大天文^C, Univ. Sannio^D, INFN Rome^E, NIKHEF^F

高橋竜太郎^A, 石崎秀晴^A, 佐藤直久^A, 関口貴令^B, 正田亜八香^A, 藤井善範^C, F. E. Pena Arellano^A, M. Barton^A, 平田直篤^A, 大渕喜之^A, 浦口史寛^A, 池之上文吾^A, 斎藤栄^A, 福嶋美津広^A, 阿久津智忠^A, 大石奈緒子^A, 麻生洋一^A, R. Flaminio^A, 山元一広^B, 内山隆^B, 宮川治^B, 上泉眞裕^B, R. DeSalvo^D, E. Majorana^E, 我妻一博^F, J. van Heijningen^F

1

• 腕共振器鏡用 防振装置 Type-A SAS について

• ダンピング制御のモデル計算

• センサ/アクチュエータの性能評価

KAGRA の 鏡防振装置

- 腕共振器鏡用の最大の防振装置
- この発表は特に常温部分のお話

- 腕共振器鏡用の最大の防振装置
- この発表は特に常温部分のお話

Type-A SAS に対する要求

振り子全体のねじれ(Yaw)モード ➤ ダンピング制御が難しい

振り子全体のねじれ(Yaw)モード > ダンピング制御が難しい

この段にセンサ/アクチュエータを 追加してダンピングできないか?

やったこと:

 モデル計算によるダンピング制御
センサ/アクチュエータ(prototype) の性能評価

SASのモデル計算

検索 **JGW SUMCON**

剛体モデル計算ツール

MATLAB + Simulink

- Control System Toolbox
- 制御系含む状態空間モデル

※ 最新版は KAGRA Wiki > SVN > VIS にて共有

 $\Phi = 500 \text{ mm}$.

問題となるYawモード

#0: 0.018 Hz

#1: 0.049 Hz

#2: 0.076 Hz

#3: 0.099 Hz

F0 ステージの制御

➤ Yaw モードは見えない

≻ Yaw モードの振動を制御可能

BF 制御時のダミーマスの伝達関数

振動モードの減衰時間 (F0 + BF 制御)

14

BFステージにセンサ/アクチュエータを付けれ ばYawモードを制御できる

Bottom Filter LVDT

Bottom Filter LVDT

Bottom Filter LVDT

BF LVDT (プロトタイプ)

- Adv. Virgo の LVDT → KAGRA用に改造
- Type-A だけでなく Type-Bp でも使用

BF LVDT 配置図

センサ性能評価

- 線形領域:~15mm>10mm(※可動域~20mm)
- センサ信号範囲:約 ±10 V <~ ADC 入力レンジ(±10 V)
- 垂直方向変位によるカップリング:~0.03%@±5mm

アクチュエータ性能評価 Preliminary

- 線形領域:10mm(効率の変化<8%) (要求値)
- ・ 最大アクチュエーション力: 5.3 x 10⁻² N > 6.5 x 10⁻⁵ N
- 雑音レベルが厳しい → 磁石を小さくするなどで対応

まとめ

Type-A SAS のインストール準備・制御系設計を進めている

やったこと

- モデル計算によるYawモードのダンピング制御
- BF LVDT プロトタイプの性能評価

今後やること

- ペイロード部分も含めた制御系の設計
- BF LVDT の製作・試験
- センサなど、各要素の組み立て・試験

Backup Slides

After installations of Type-A room-temperature parts, Cryopayloads are integrated

Yaw振動スペクトルの計算方法

各懸架点にオフセット

▶ 並進地面振動からYaw回転へcouple

全懸架点ずれについての Yaw の和

BFLVDTで制御するYaw角度揺れ

BF LVDTでdampする低周波(~< 0.15 Hz)の振動についてのみ RMSを計算