JGW-T1605101

April 12, 2016

Summary of iKAGRA Test Run Mar 25-31, 2016

Yuta Michimura

Department of Physics, University of Tokyo

Quick Facts

- 3 km Michelson, mid-fringe lock
- input power to BS ~ 220 mW
- power at detection port (REFL) ~ 8 mW
- duration: Mar 25 9:00 JST Mar 31 17:00 JST (from 1142899217 to 1143446417 in GPS time)
- duty cycle (lock): 85.2 % (IMC was 94.4 %)
- total locked time: 129.5 hours
- longest lock: 3.6 hours (but typically ~ 30 minutes)
- strain sensitivity: ~3e-15 /rtHz @ 100 Hz (~0.77pc for 1.4Msun-1.4Msun NS-NS inspiral range)

Thanks to inputs from Y. Saito, T. Uchiyama, Y. Aso, O. Miyakawa, K. Kokeyama, K. Hayama, Y. Sasaki, M. Nakano, Y. Enomoto, T. Shimoda, etc

Interferometer Configuration

- 3 km Michelson, mid-fringe lock, UGF ~8 Hz
- suspended mirrors DC alignment controlled with oplevs

Suspensions and Mirrors

• fused silica, room temperature

Vacuum

 central part and both ends were at air (PR2-BS was not connected, but covered; <u>klog #1078</u>)

Calibration

- calibration of error signal (optical gain)
 2.3e10 counts/m (<u>klog #1169</u>)
- calibration of feedback signal (actuator efficiency)
 1.8e-14 m/counts @ 80 Hz (klog #1169)
- calibration lines at 80 Hz and 135 Hz to monitor loop gain

Duty Cycle and Lock Duration

 duty cycle: 85.2 % (94.4 % for IMC)

data processing and plot by Y. Sasaki

100

10

frequency

 longest lock: 3.6 hours (12 hours for IMC)

IMC lock duration histogram

"IMC_LOCK_DIST_10minute.txt" using 1:2

180210240270300330360390420450480510540570600630660690720

time(minute)

TIME MAX = 714

Tidal Drift

- X arm length and Y arm length drifts by ~60 um
- this caused lock loss every ~30 min because of the saturation of the feedback signal

 \rightarrow needs more actuation range

8

Openloop Gain Drift

MICH openloop gain degraded by almost 80 % (likely by alignment drift)

 \rightarrow needs UGF servo (and online calibration)

Inspiral Range

- average: 0.77 pc standard deviation: 0.39 pc for 1.4Msun-1.4Msun NS-NS
- rough strain sensitivity fluctuated by roughly 1 order of magnitude

inspiral range during iKAGRA run in March, 2016

Noise Budget

 likely to be limited by intensity noise of the IMC transmitted beam

plot generated with Simulink NoiseBudget by Y. Michimura (klog #1323)

Issues in March Test Run

Michelson lock was lost every ~30 minutes

- Alignment was adjusted manually ~ once per day
- Calibration was done offline
- PMC was re-locked manually
- GVs close to IXA/IYA was closed
- PR2-BS duct was not connected
- Some unsafe issues left unaddressed

What's New in April Test Run

• Michelson lock was lost every ~30 minutes

 \rightarrow improved to > ~5 hours (limited by IMC; tidal won't be a problem this time klog #1446)

new actuation efficiency (ETM differential): 2.6e-9 m/C at DC(<u>klog #1340</u>), higher UGF (<u>klog #1344</u>), RF lock instead of DC lock (<u>klog #1388</u>), x10 sensitivity (<u>klog #1389</u>), folded oplev for ETMs to reduce L2A (<u>klog #1355</u>) more stable IMC (less feedback to mirrors <u>klog #1386</u>, oplev DC servo turned off <u>klog #1449</u>)

- Alignment was adjusted manually ~ once per day
 → dither alignment installed for IMC (working perfectly;
- Calibration was done offline \rightarrow UGF servo (klog #1425) and online calibration (klog #1456)
- PMC was re-locked manually remote control restored
- GVs close to IXA/IYA was closed opened (klog #1351)
- PR2-BS duct was not connected connected
- Some unsafe issues left unaddressed partially addressed

Calibration for April Test Run

- calibration of error signal (optical gain)
 <u>5.3e10 counts/m (klog #1455</u>)
- calibration of feedback signal (actuator efficiency) 2.6(1)e-9 m/counts @ DC (klog #1340)
- calibration lines at 80 Hz for UGF servo (UGF controlled at 100 Hz) and at 135 Hz for loop gain monitor, other

independent lines for monitoring actuator efficiency change

Updated Noise Budget

- not limited by intensity noise of the IMC transmitted beam
- could be BS angular noise coupling?

plot generated with Simulink NoiseBudget by T. Shimoda (klog #1478)

What To Do After April Test Run

- evacuate central part and both ends to open all GVs and see optical axis change to investigate alignment change during evacuation
- PR3 height check
- oplev stability, noise measurements with fixed mirror
- investigate scattering noise from vibration of ducts
- investigate why measured ETMX/Y actuator efficiency don't match calculation from coil efficiency
- what else?