



### **SUMCON User's Manual**

### Mechanical suspension modeling tool in Mathematica

# Contents

# Preparation

Installation / start program / load / save

# Model Construction

- Step 1. Registrate Rigid Bobies
- Step 2. Set Connection
- Step 3. Start calculation

0

# Calculation Result





### Preparation / Installation

#### 1) Install the Modeling tools from the below URL ; http://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=3729

| ICCRR<br>Institute for Cosmic Ray Researcy<br>University of Tokyo                                                                                                                                                       | JGW-T1503729-v1<br>[DocDB Home] [Upload Document] [Reserve Number] [Search] [Recent Changes] [Public Site] [Help]<br>Suspension rigid-body modeling tool in Mathematica<br>Abstract:<br>This is a suspension modeling tool built in Wolfram Mathematica. You will need Mathematica later than version 7. To start the program uppin | Viewable by:                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Document type:<br>I<br>Submitted by:<br><u>Takanori Sekiguchi</u><br>Updated by:<br><u>Takanori Sekiguchi</u><br>Document Created:<br>24 Jun 2015, 09:30<br>Contents Revised:<br>24 Jun 2015, 09:30<br>DB Jofo Revised: | <ul> <li>the attached file and execute 'startSUMCON.nb' in the top directory. The user manual is to be added soon.</li> <li>Files in Document: <ul> <li><u>sumcon 1 3 2 zip</u> (62 MB)</li> </ul> </li> <li>Get all files as <u>tar.gz</u>, <u>zip</u>.</li> </ul>                                                                 | <ul> <li>Public document<br/>JGW-T1503729-v1</li> <li>Modifiable by:         <ul> <li>admin</li> <li>upload</li> </ul> </li> </ul> |
| 24 Jun 2015, 09:30<br>Create a new version<br>Change DB Info<br>Username:<br>Password:                                                                                                                                  | Detector:Seismic Isolation     Activity:KAGRA     Detector:Suspensions  Authors:     Takanori Sekiguchi                                                                                                                                                                                                                             |                                                                                                                                    |
| Watch Document                                                                                                                                                                                                          | [ <u>DocDB Home</u> ] [ <u>Upload Document</u> ] [ <u>Reserve Number</u> ] [ <u>Search</u> ] [ <u>Recent Changes</u> ] [ <u>Public Site</u> ] [ <u>Help</u> ]<br>Pocument Database Administrators                                                                                                                                   |                                                                                                                                    |

# Preparation / Starting program



### Preparation / Load a model file

#### 2) Load previous file



### Preparation / Save a model file



### Model construction

#### 1) You should registrate suspension parameters as follows.

| *                                                                                                              |                                                                       | SUI                                                                                                                           | MCON Versi                                                           | on:1.32                                                           |                                                                |                                                                                                                                    | - • × |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|
| SUMCON<br>spension odel structor in Mathematica                                                                | <b>Q</b> • ,                                                          | SUMCON V<br>About SUM                                                                                                         | ersion:1.32<br>CON <mark>Ver</mark>                                  | sion Info                                                         | eflesh                                                         |                                                                                                                                    | ^     |
| New Model     Load Model     Sa       Model Construction     Calculation       Step 1. Registrate Rigid Bodies | ave Model typ<br>n Result   Export                                    | peAproto_160<br>t <b>Model</b>                                                                                                | 324_TMspr_w                                                          | oIMeddy.m                                                         |                                                                |                                                                                                                                    |       |
| 1-1Set Body Names1-2Set Mass & MoI1-3Set Body Shapes1-4Set Initial Position                                    | Body:<br>GND Name<br>O g<br>F0<br>MD<br>SF1<br>SF2<br>SF3<br>BF<br>PF | <ul> <li>M [kg]</li> <li>0</li> <li>474</li> <li>18</li> <li>104</li> <li>90</li> <li>87</li> <li>84</li> <li>61.5</li> </ul> | Ixx [kgm2]<br>0<br>60<br>0.72<br>4.4<br>4.1<br>4.<br>4.<br>4.<br>2.4 | Iyy [kgm2]<br>0<br>120<br>1.49<br>7.3<br>6.4<br>6.4<br>6.4<br>3.8 | Izz [kgm2]<br>0<br>60<br>0.72<br>4.4<br>4.1<br>4.<br>4.<br>2.4 | Shape<br>Doughnut[y]<br>Cylinder[y]<br>Doughnut[y]<br>TruncatedCone[y]<br>TruncatedCone[y]<br>TruncatedCone[y]<br>TruncatedCone[y] | *     |
| Step 2. Set Connection<br>Set Material Properties<br>2–1<br>Set Wires<br>2–2<br>Set Vertical Springe           | Wire:<br>Name<br>F0-MD-1<br>F0-MD-2<br>F0-MD-3                        | Body1<br>F0<br>F0<br>F0                                                                                                       | Body2 I<br>MD I<br>MD I<br>MD I                                      | Material<br>Maraging Steel<br>Maraging Steel<br>Maraging Steel    | L [m]<br>1.9398<br>1.9398<br>1.9398                            | D [mm]<br>2.<br>2.<br>2.                                                                                                           |       |

### **Axes definition**



### Model construction / Step 1. / Set Body Names

#### 2) Set suspension names

| *                                                                                                                                          | S                             | UMCON Ver               | rsion:1.32                                                     |                                     |                          |            | ×      |        |       |       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|----------------------------------------------------------------|-------------------------------------|--------------------------|------------|--------|--------|-------|-------|---|
| SUMCON in Mathematica                                                                                                                      | *                             |                         |                                                                |                                     | 1-1 Se                   | t Body Nar | nes    |        |       |       | × |
| New Model Load Model Save Model                                                                                                            | Registr                       | ate Body                | Names                                                          |                                     |                          |            |        |        |       |       |   |
| Model Construction Calculation Result                                                                                                      | GND                           | Name                    | GND                                                            | Name                                | GND                      | Name       | GND    | Name   | GND   | Name  |   |
| Step 1. Registrate Rigid Bodies                                                                                                            | <ul><li>✓</li></ul>           | g                       |                                                                | F0                                  |                          | MD         |        | SF1    |       | SF2   |   |
| 1–1 Body:                                                                                                                                  |                               | SF3                     |                                                                | BF                                  |                          | PF         |        | RMario |       | Mario |   |
| Set Body Names                                                                                                                             |                               | IRM                     |                                                                | IM                                  |                          | RM         |        | TM     |       |       |   |
| Set Mass & MoI                                                                                                                             |                               |                         |                                                                |                                     |                          |            |        |        |       |       |   |
| 1–3<br>Set Body Shapes                                                                                                                     |                               |                         |                                                                |                                     |                          |            |        |        |       |       |   |
| 1-4                                                                                                                                        |                               |                         |                                                                |                                     |                          | Objec      | cts_to | uched  | on gr | ound  |   |
| Set Initial Position                                                                                                                       | Save                          | Cancel                  |                                                                |                                     |                          | shoul      | d be   | checke | d hei | re.   |   |
| Step 2. Set Connection                                                                                                                     |                               |                         |                                                                |                                     |                          |            |        |        |       |       |   |
| Set Material Properties     Wire:       2-1     Name       Set Wires     F0-MD-       2-2     F0-MD-       Set Vertical Springs     F0-MD- | Body1<br>1 F0<br>2 F0<br>3 F0 | Body2<br>MD<br>MD<br>MD | Material<br>Maraging Steel<br>Maraging Steel<br>Maraging Steel | L [m]<br>1.9398<br>1.9398<br>1.9398 | D [mm]<br>2.<br>2.<br>2. |            | ,<br>, |        |       |       |   |
|                                                                                                                                            |                               |                         |                                                                |                                     |                          | 100        | »<br>• |        |       |       |   |

# **Model construction / Step 1. / Set Mass** Please click the "Off-diag".

#### 3) Set Masses and Moment of inertia

Registration page is open. <a href="https://www.selicitation.com"></a>

| <b>\$</b>                                         | *      |          |          |           | 1-2 Set M | 1ass & MoI |         |   |          | ×   |
|---------------------------------------------------|--------|----------|----------|-----------|-----------|------------|---------|---|----------|-----|
| SUMCON in Mathematica                             | Set Ma | ss and M | loment o | f Inertia |           |            |         |   |          | î î |
| spension odel structor                            |        | Сору     | Paste    | Mass      | Ixx       | Іуу        | Izz     |   | I Matrix |     |
| New Model Load Model Save Model typeApr           | g      | Сору     | Paste    | 0         | 0         | 0          | 0       | • | Off-Diag |     |
| Model Construction Calculation Result Export Mode | F0     | Сору     | Paste    | 474       | 60        | 120        | 60      | * | Off-Diag |     |
| Step 1. Registrate Rigid Bodies                   | MD     | Copy     | Paste    | 18        | 0.7199-   | 1.49       | 0.7199- | * | Off-Diag |     |
|                                                   | SF1    | Copy     | Paste    | 104       | 4.4       | 7.3        | 4.4     | * | Off-Diag |     |
| 1–1 Body:                                         | SF2    | Copy     | Paste    | 90        | 4.1       | 6.4        | 4.1     | * | Off-Diag |     |
| Set Body Names GND Name N                         | SF3    | Copy     | Paste    | 87        | 4.        | 6.4        | 4.      | * | Off-Diag |     |
| 1-2 F0 4                                          | BF     | Copy     | Paste    | 84        | 4.        | 6.4        | 4.      | * | Off-Diag |     |
| 1-3 MD 1<br>SF1 1                                 | PF     | Copy     | Paste    | 61.5      | 2.4       | 3.8        | 2.4     | * | Off-Diag |     |
| Set Body Shapes SF2 9                             | RMario | Copy     | Paste    | 20.54     | 0.5022-   | 0.8413-    | 0.5127- | * | Off-Diag |     |
| 1–4 Set Initial Position BF 8                     | Mario  | Copy     | Paste    | 21.07     | 0.1593-   | 0.3015-    | 0.1631- | * | Off-Diag |     |
| PF 6                                              | IRM    | Copy     | Paste    | 20.82     | 0.3353-   | 0.6379-    | 0.3279- | * | Off-Diag |     |
| <                                                 | IM     | Copy     | Paste    | 20.67     | 0.0933-   | 0.1653-    | 0.1053- | * | Off-Diag |     |
| Sten 2 Set Connection                             | RM     | Copy     | Paste    | 22.91     | 0.3961-   | 0.3611-    | 0.4355- | • | Off-Diag |     |
| Step 2. See connection                            | ТМ     | Copy     | Paste    | 22.88     | 0.1115-   | 0.1135-    | 0.1399- | * | Off-Diag |     |
| Set Material Properties Wire:                     |        |          | 1        |           |           |            |         |   |          |     |
| 2-1 Name Bo                                       | Save   | Cancel   |          | Kegis     | terea c   | odies      |         |   |          |     |
| Set wires F0-MD-2 F0                              |        |          |          |           |           |            |         |   |          | ~   |
| Sat Vertical Springs                              |        |          |          |           |           |            |         |   | 100      | % 🔺 |
|                                                   | _      |          |          |           |           | 100%       | ▲       |   |          |     |

| 2 0 | ст на | 55 & MOI |     |    |
|-----|-------|----------|-----|----|
|     |       |          |     |    |
|     |       | I Matrix |     |    |
|     | *     | Off-Diag |     |    |
|     |       | ×        | У   | z  |
| _   |       | x 60     | 0   | 0  |
| -   | ^     | у 0      | 120 | 0  |
|     |       | z 0      | 0   | 60 |
|     | •     | Off-Diag |     |    |
|     |       | Off-Diag |     |    |
|     | *     | Off-Diag |     |    |
|     | *     | Off-Diag |     |    |

## Model construction / Step 1. / Body shape

#### 4) Set suspension body shapes

|                                                                              | 拳      |          |          | 1-3 Set            | Body Shapes                                                                           | ×          |
|------------------------------------------------------------------------------|--------|----------|----------|--------------------|---------------------------------------------------------------------------------------|------------|
|                                                                              | Set Ap | pearance | of Bodie | 25                 |                                                                                       | ^          |
| spension odel structor in Mathematica                                        |        | Сору     | Paste    | Select Shape       | Dimension                                                                             |            |
| New Model Load Model Save Model type                                         | g      | Сору     | Paste    | Doughnut[y] -      | Outer D Inner D<br>1.5 0.8 0.2 0.2 0.2                                                |            |
| Model Construction Calculation Result Event                                  | F0     | Сору     | Paste    | Cylinder[y] -      | Diameter Height 1.4 0.2 0.2 0.2 0.2 0.2                                               | -          |
| Step 1. Registrate Rigid Bodies                                              | MD     | Сору     | Paste    | Doughnut[y] -      | Outer D         Inner D           0.7         0.5         0.2         0.2         0.2 | 5          |
| Set Body Names  I-2  Set Body Names  GND Name  GND  GND  Name  GND  Set Body | SF1    | Сору     | Paste    | TruncatedCone[y] 🔻 | Upper D Lower D Height 0.6 0.8 0.2 0.2 0.2                                            | 5          |
| Set Mass & MoI         F0           1-3         SF1                          | SF2    | Сору     | Paste    | TruncatedCone[X] - | Upper D Lower D Height 0.6 0.8 0.2 0.2 0.2                                            | 5          |
| Set Body Shapes SF2<br>1-4 SF3<br>BF                                         | SF3    | Сору     | Paste    | TruncatedCone[y]   | Upper D Lower D Height 0.6 0.8 0.2 0.2 0.2                                            |            |
| PF                                                                           | BF     | Сору     | Paste    | TruncatedCone[y] - | Upper D Lower D Height<br>0.5 0.7 0.2 0.2 0.2                                         | -          |
| Step 2. Set Connection                                                       | PF     | Сору     | Paste    | TruncatedCone[y] - | Upper D Lower D Height<br>0.4 0.6 0.2 0.2 0.2                                         |            |
| Set Material Properties Wire:                                                | RMario | Сору     | Paste    | OpenCuboid[y] -    | x-size Choose the shap                                                                | e          |
| 2–1<br>Set Wires F0–MD–1<br>F0–MD–2                                          | <      |          |          | - • • •            | x-size From options                                                                   | <b>`</b> ~ |
| 2-2 F0-MD-3                                                                  |        |          |          |                    | 10                                                                                    | 0% 🔺       |
|                                                                              |        |          |          |                    | 100% 🔺 🔡                                                                              |            |

### Model construction / Step 1.

#### 5) Set suspension initial positions

# The shape, you chose in the step 1-3, should be reflected to this screen.

| <b>*</b>                                      | *        |                   | 1-4         | 4 Set Initial Position |   |
|-----------------------------------------------|----------|-------------------|-------------|------------------------|---|
| SUMCON in Mathematica                         | Set Init | ial Position of F | igid Bodies |                        |   |
| New Model Load Model Save Model typeA         | Name     | x [mm]            | y [mm]      | z [mm]                 |   |
| Model Construction Calculation Result Event M | g        | 0.                | 0.          | 0.                     |   |
| Step 1. Registrate Rigid Bodies               | F0       | 0.                | 500.        | 0.                     |   |
| 1-1 Body:                                     | MD       | 0.                | -1621.1     | 0.                     |   |
| Set Body Names GND Name                       | SF1      | 0.                | -1771.1     | 0.                     |   |
| 1–2 F0<br>Set Mass & MoI MD                   | SF2      | 0.                | -4042.1     | 0.                     |   |
| 1-3 SF1                                       | SF3      | 0.                | -6313.1     | 0.                     |   |
| 1-4 SF2                                       | BF       | 0.                | -8686.1     | 0.                     |   |
| Set Initial Position BF                       | PF       | 0.                | -11967.1    | 0.                     |   |
| <                                             | RMario   | 0.                | -12386.1    | 0.                     |   |
| Step 2. Set Connection                        | Mario    | 0.                | -12386.1    | 0.                     |   |
| Wire-                                         | IRM      | 0.                | -12654.503  | 0.                     |   |
| 2-1 Name                                      | IM       | 0.                | -12654.403  | 0.                     |   |
| Set Wires F0-MD-1<br>F0-MD-2                  | RM       | 0.                | -13004.503  | 0.                     |   |
| Set Vertical Springs                          | тм       | 0.                | -13004.503  | 0.                     | ō |
|                                               | Save     | Cancel            |             |                        |   |

1) Set suspension wire information, by clinking here

| Step 2. Set Connection         |                      | 🌣<br>Set Wir        | es      |                   |        | 2-1 Set W   | ires |        |          |         | ×           |
|--------------------------------|----------------------|---------------------|---------|-------------------|--------|-------------|------|--------|----------|---------|-------------|
| Set Material Properties        | Wire:                | Create N<br>Edit Ea | ew Wire | Set Material Prop | erties |             |      |        |          |         |             |
| 2-1<br>Eat Wires               | F0-MD-1              | Del                 | Сору    | Name              | U Body | U Clamp Pos | [mm] |        | L Body   | L Clamp | Pos [m      |
| Set wires                      | F0-MD-2              | Delete              | Copy    | F0-MD-1           | F0 -   | 290.        | -80. | 0.     | MD 🔹     | 290.    | 17          |
| 2-2<br>Set Mention I Continent | F0-MD-3              | Delete              | Сору    | F0-MD-2           | F0 -   | -145.       | -80. | -251   | MD 👻     | -145.   | 17          |
| set vertical springs           | F0-SF1-1             | Delete              | Сору    | F0-MD-3           | F0 •   | -145        | -80. | 251.1- | MD 👻     | -145    | 17          |
| 2–3<br>Set Towerted Dendulum   | SF1-SF2-<br>SF2_SF3- | Delete              | Copy    | F0-SF1-1          | F0 -   | 0.          | 120. | 0.     | SF1 🔻    | 0.      | -1          |
| et Inverted Pendulum           | SF3-BF-1             | Delete              | Copy    | SF1-SF2-1         | SF1 -  | 0.          | -25. | 0.     | SF2 🔻    | 0.      | 5.          |
| 2-4                            | BF-PF-1              | Delete              | Сору    | SF2-SF3-1         | SF2 👻  | 0.          | -5.  | 0.     | SF3 🔻    | 0.      | 5.          |
| et Heat Links                  | PF-Mario-            | Delete              | Copy    | SF3-BF-1          | SF3 🔻  | 0.          | -5.  | 0.     | BF 👻     | 0.      | 5.          |
| -5                             | PF-RMario            | Delete              | Conv    | BF-PF-1           | BF 👻   | 0           | -5   | 0.     | PF 🔻     | 0       | 5           |
| set Damper                     | PF-RMario            | Delete              | Conv    | PE-Mario-1        | PF v   | 0           | -5   | 0      | Mario 💌  | 0       | 5           |
|                                | Mario-IM-            | Delete              | Capy    | DE-PMario_1       | DE -   | 175.5       | -J.  | 0.     | PMario - | 175 5   | 5.          |
|                                | Mario-IM-            | Delete              | Сору    | PF-RMaria 2       |        | 1/5.5       | -5.  | 0.     |          | 1/5.5   | 5.<br>      |
|                                | <                    | <                   |         |                   |        |             |      |        |          |         | ><br>100% ▲ |
|                                |                      |                     |         |                   |        |             |      |        |          |         |             |
| Step 3. Start Calculation      |                      |                     |         |                   |        |             |      |        |          |         |             |
|                                |                      |                     |         |                   |        |             |      |        |          |         |             |
|                                | •                    |                     |         |                   |        |             |      |        |          |         |             |
| Construct Model                |                      |                     |         |                   |        |             |      |        |          |         |             |

In more detail, please See p. 12 ~ p. 15

#### 2 - i) Set suspension wire information



#### The number of the wires

Upper & lower body name

Suspension position of the upper & lower body (From body's Center of Mas)

Wire material (They are registered already. mostly.)

1)Length, 2) diameter, 3) Neck length, 4) Neck dimeter

#### Wire stiffness

#### 2 - ii) Set suspension wire information



#### The number of the wires

Upper & lower body name

Suspension position of the upper & lower body (From body's Center of Mas)

Wire material (They are registered already. mostly.)

1)Length, 2) diameter, 3) Neck length, 4) Neck dimeter

#### Wire stiffness

#### 2 - iii) Set suspension wire information



#### The number of the wires

Upper & lower body name

Suspension position of the upper & lower body (From body's Center of Mas)

Wire material (They are registered already. mostly.)

1)Length, 2) diameter, 3) Neck length, 4) Neck dimeter

#### Wire stiffness

#### 2 - iv) Set suspension wire information



#### The number of the wires

Upper & lower body name

Suspension position of the upper & lower body (From body's Center of Mas)

Wire material (They are registered already. mostly.)

1)Length, 2) diameter, 3) Neck length, 4) Neck dimeter

#### Wire stiffness

#### This sheet is output automatically.

| *    |          |        |                   |          | 2-1 Set   | Wires   | ٠      |          |             |        | 2-1 Se  | et Wires           |         |            |     | \$    |       |              |            | 2-1 Set | Wires   |          |               |    | ×      |
|------|----------|--------|-------------------|----------|-----------|---------|--------|----------|-------------|--------|---------|--------------------|---------|------------|-----|-------|-------|--------------|------------|---------|---------|----------|---------------|----|--------|
| Edi  | t Each   | Wire   | Edit Wire Connect | ion      |           |         |        |          |             |        |         |                    |         |            |     |       |       |              |            |         |         |          |               |    |        |
| Del  |          | Сору   | Name              | U Body   | U Clamp P | os [mm] |        | L Body   | L Clamp Pos | s [mm] |         | Mat                | E [GPa] | Poission R | Los | [rad] | L     | .[m] D [mn   | i] NL [mm] | ND [mm] | T [N]   | Upper Cl | amp Direction |    | Low    |
| Del  | te       | Copy   | F0-MD-1           | F0 •     | 290.      | -80.    | 0.     | MD 🔻     | 290.        | 17.    | 0.      | C-70 Steel 🔹       | 200     | 0.3        | 3.  | E -   | -4 1  | 1.6211 4.500 | 0- 26.5    | 2.      | 294.3   | 0        | -1            | 0  | 0      |
| Del  | te       | Сору   | F0-MD-2           | F0 -     | -145.     | -80.    | -251   | MD 👻     | -145.       | 17.    | -251    | C-70 Steel 🔹       | 200     | 0.3        | 3.  | E ·   | -4 1  | 1.6211 4.500 | 0- 26.5    | 2.      | 294.3   | 0        | -1            | 0  | 0      |
| Del  | te       | Copy   | F0-MD-3           | F0 •     | -145      | -80.    | 251.1- | MD 🔹     | -145        | 17.    | 251.1-  | C–70 Steel 🔹       | 200     | 0.3        | 3.  | E ·   | -4 1  | 1.6211 4.500 | 0- 26.5    | 2.      | 294.3   | 0        | -1            | 0  | 0      |
| Del  | te       | Copy   | F0-SF1-1          | F0 •     | 0.        | 120.    | 0.     | SF1 🔹    | 0.          | 2.5    | 0.      | Maraging Steel 🔹 👻 | 184     | 0.32       | 1.  | E ·   | -4 2  | 2.2711 4.500 | 0- 30.5    | 3.      | 6652.16 | 0        | -1            | 0  | 0      |
| Del  | te       | Сору   | SF1-SF2-1         | SF1 •    | 0.        | -44.    | 0.     | SF2 🔻    | 0.          | 2.5    | 0.      | Maraging Steel 🔹 👻 | 184     | 0.32       | 1.  | E ·   | -4 2  | 2.271 4.500  | 0- 30.5    | 3.      | 5546.5- | 0        | -1            | 0  | 0      |
| Del  | te       | Сору   | SF2-SF3-1         | SF2 🔹    | 0.        | -44.    | 0.     | SF3 🔹    | 0.          | 2.5    | 0.      | Maraging Steel 🔹 👻 | 184     | 0.32       | 1.  | E ·   | -4 2  | 2.271 4.500  | 0- 30.5    | 3.      | 4440.99 | 0        | -1            | 0  | 0      |
| Del  | te       | Сору   | SF3-BF-1          | SF3 -    | 0.        | -44.    | 0.     | BF 👻     | 0.          | 2.5    | 0.      | Maraging Steel 🔹 👻 | 184     | 0.32       | 1.  | E ·   | -4 2  | 2.373 4.500  | 0- 30.5    | 3.      | 3335.4  | 0        | -1            | 0  | 0      |
| Del  | te       | Сору   | BF-PF-1           | BF 💌     | 0.        | -54.5   | 0.     | PF 🔻     | 0.          | 1.5    | 0.      | Maraging Steel 🔹 👻 | 184     | 0.32       | 1.  | E -   | -4 3  | 3.281 4.500  | 0- 30.5    | 3.      | 2354.4  | 0        | -1            | 0  | 0      |
| Del  | te       | Сору   | PF-Mario-1        | PF 🔹     | 0.        | -79.0-  | 0.     | Mario 👻  | 0.          | 1.5    | 0.      | Maraging Steel 🔹   | 184     | 0.32       | 1.  | E ·   | -4 0  | 0.169 4.500  | 40.5       | 2.      | 712.206 | 0        | -1            | 0  | 0      |
| Del  | te       | Copy   | PF-RMario-1       | PF 💌     | 0.        | 20.     | -175.5 | RMario 💌 | 0.          | 17.    | -175.5  | Copper Beryllium 🔹 | 134     | 0.3        | 5.  | E ·   | -6 0  | 0.287 4.500  | 0- 40.5    | 2.      | 857.394 | 0        | -1            | 0  | 0      |
| Del  | te       | Copy   | PF-RMario-2       | PF 🔹     | 151.9-    | 20.     | 87.75  | RMario 🔻 | 151.9-      | 17.    | 87.75   | Copper Beryllium 🔻 | 134     | 0.3        | 5.  | E ·   | -6 0  | 0.287 4.500  | 40.5       | 2.      | 857.394 | 0        | -1            | 0  | 0      |
| Del  | te       | Copy   | PF-RMario-3       | PF 🔹     | -151      | 20.     | 87.75  | RMario 💌 | -151        | 17.    | 87.75   | Copper Beryllium 🔻 | 134     | 0.3        | 5.  | E ·   | -6 0  | 0.287 4.500  | 0- 40.5    | 2.      | 857.394 | 0        | -1            | 0  | 0      |
| Del  | te       | Сору   | Mario-IM-1        | Mario 🔹  | 94.       | -5.     | 110.   | IM 👻     | 94.         | 5.     | 110.    | Copper Beryllium 🔻 | 134     | 0.3        | 5.  | E ·   | -6 0  | 0.2684-      | 0.         | 0.6     | 464.994 | 0        | -1            | 0  | 0      |
| *    |          |        |                   |          | 2-1 Set \ | Wires   | *      |          |             |        | 2-1 Set | Wires              |         |            | 1   | \$    |       |              |            | 2-1 Set | Wires   |          |               |    | ×      |
| Dele | e        | Сору   | Mario-IM-3        | Mario 🔻  | -94.      | -5.     | 110.   | IM 👻     | -94.        | 5.     | 110.    | Copper Beryllium 👻 | 134     | 0.3        | 5.  | E -   | 6 0   | .2684- 0.6   | 0.         | 0.6     | 464.994 | 0        | -1            | 0  | 0 ^    |
| Dele | e        | Copy   | Mario-IM-4        | Mario 🝷  | -94.      | -5.     | -110.  | IM 👻     | -94.        | 5.     | -110.   | Copper Beryllium 👻 | 134     | 0.3        | 5.  | E –   | 6 0.  | .2684- 0.6   | 0.         | 0.6     | 464.994 | 0        | -1            | 0  | 0      |
| Dele | e        | Copy   | RMario-IRM-1      | RMario 🔻 | 171.7     | 5.      | 161.   | IRM 👻    | 171.7       | 30.    | 161.    | Copper Beryllium 👻 | 134     | 0.3        | 5.  | E –   | 6 0.  | .2425- 0.6   | 0.         | 0.6     | 610.182 | 0        | -1            | 0  | 0      |
| Dele | e        | Copy   | RMario-IRM-2      | RMario 👻 | 171.7     | 5.      | -161.  | IRM 👻    | 171.7       | 30.    | -161.   | Copper Beryllium 🔻 | 134     | 0.3        | 5.  | E –   | 6 0.  | .2425- 0.6   | 0.         | 0.6     | 610.182 | 0        | -1            | 0  | 0      |
| Dele | e        | Copy   | RMario-IRM-3      | RMario 👻 | -171.7    | 5.      | 161.   | IRM 👻    | -171.7      | 30.    | 161.    | Copper Beryllium 👻 | 134     | 0.3        | 5.  | E –   | 6 0.  | .2425- 0.6   | 0.         | 0.6     | 610.182 | 0.       | -1.           | 0. | 0.     |
| Dele | e        | Copy   | RMario-IRM-4      | RMario 💌 | -171.7    | 5.      | -161.  | IRM 🔹    | -171.7      | 30.    | -161.   | Copper Beryllium 👻 | 134     | 0.3        | 5.  | E –   | 6 0.  | .2425- 0.6   | 0.         | 0.6     | 610.182 | 0.       | -1.           | 0. | 0.     |
| Dele | e        | Сору   | IM-TM-1           | IM 👻     | 114.2     | -40.    | 29.2   | TM 👻     | 114.2       | -30.   | 29.2    | Sapphire 👻         | 345     | 0.3        | 2.  | E -   | 7 0.  | .33 1.6      | 0.         | 1.6     | 221.706 | 0        | -1            | 0  | 0      |
| Dele | e        | Copy   | IM-TM-2           | IM 👻     | 114.2     | -40.    | -29.2  | TM 🔹     | 114.2       | -30.   | -29.2   | Sapphire 👻         | 345     | 0.3        | 2.  | E -   | 7 0.  | .33 1.6      | 0.         | 1.6     | 221.706 | 0        | -1            | 0  | 0      |
| Dele | e        | Copy   | IM-TM-3           | IM 👻     | -114.2    | -40.    | 29.2   | TM 👻     | -114.2      | -30.   | 29.2    | Sapphire 👻         | 345     | 0.3        | 2.  | E –   | 7 0.  | .33 1.6      | 0.         | 1.6     | 221.706 | 0        | -1            | 0  | 0      |
| Dele | e        | Copy   | IM-TM-4           | IM 👻     | -114.2    | -40.    | -29.2  | TM 👻     | -114.2      | -30.   | -29.2   | Sapphire 👻         | 345     | 0.3        | 2.  | E -   | 7 0.  | .33 1.6      | 0.         | 1.6     | 221.706 | 0        | -1            | 0  | 0      |
| Dele | e        | Сору   | IRM-RM-1          | IRM 👻    | 153.1-    | 50.     | 44.70- | RM 👻     | 153.1-      | 50.    | 44.70-  | Copper Beryllium 🝷 | 134     | 0.3        | 5.  | E –   | 6 0.  | .3308- 0.6   | 0.         | 1.      | 362.97- | 0        | -1            | 0  | 0      |
| Dele | e        | Copy   | IRM-RM-2          | IRM 🔹    | 153.1-    | 50.     | -44.7- | RM 🔹     | 153.1-      | 50.    | -44.7-  | Copper Beryllium 🝷 | 134     | 0.3        | 5.  | E –   | 6 0.3 | .3308- 0.6   | 0.         | 1.      | 362.97- | 0        | -1            | 0  | 0      |
| Dele | e        | Сору   | IRM-RM-3          | IRM 👻    | -153      | 50.     | 44.70- | RM 👻     | -153        | 50.    | 44.70-  | Copper Beryllium 👻 | 134     | 0.3        | 5.  | E –   | 6 0.  | .3308- 0.6   | 0.         | 1.      | 362.97- | 0        | -1            | 0  | 0      |
| Dele | e        | Copy   | IRM-RM-4          | IRM 🔹    | -153      | 50.     | -44.7- | RM 🔹     | -153        | 50.    | -44.7-  | Copper Beryllium 🔻 | 134     | 0.3        | 5.  | E –   | 6 0.  | .3308- 0.6   | 0.         | 1.      | 362.97- | 0        | -1            | 0  | 0      |
| Sa   | <b>e</b> | Cancel | ]                 |          |           |         |        |          |             |        |         |                    |         |            |     |       |       |              |            |         |         |          |               |    |        |
| <    |          |        |                   |          |           |         | <      |          |             |        |         |                    |         |            |     | <     |       |              |            |         |         |          |               |    | >      |
|      |          |        |                   |          |           |         |        |          |             |        |         |                    |         |            | 100 |       |       |              |            |         |         |          |               |    | 100% 🔺 |

### Model construction / Step 2. / Set Vertical springs (GAS)

| 1) Set GAS filter, by       | *          |           |       |              | 2-2 Set Vertical Springs                                   |
|-----------------------------|------------|-----------|-------|--------------|------------------------------------------------------------|
|                             | Set Ve     | rtical Sp | rings |              | * New Vertical Springs                                     |
| Step 2. Set Connection      | Create     | New Spri  | ngs 🔍 | News         | Registrate New Vertical Springs                            |
|                             | Delete     | Сору      | Edit  | GAS0         | Spring Name                                                |
| Set Material Properties     | Delete     | Сору      | Edit  | GAS1         | GAS0 Namo                                                  |
| Set Wires                   | Delete     | Сору      | Edit  | GAS2<br>GAS3 | Choose wire suspension point where spring is inserted      |
| 2-2<br>Set Vertical Springs | Delete     | Сору      | Edit  | GAS4         | Desition of the CAC                                        |
| 2-3                         | Delete     | Сору      | Edit  | GAS5         | F0-SF1-1 • Upper SP • • • • • • • • • • • • • • • • • •    |
| Set Inverted Pendulum       | Delete     | Сору      | Edit  | TMspring1    | Stiffness & Prestress                                      |
| 2–4<br>Set Heat Links       | Delete     | Сору      | Edit  | TMspring3    | Calculate from wire tension & resonant frequency Stiffness |
| 2–5<br>Set Demonstra        | Delete     | Сору      | Edit  | TMspring4    | Stiffness: 2409.3- N/m<br>Prestress: 6652.16 N             |
| Set Damper                  | Save<br><  | Cance     | 1     |              |                                                            |
|                             | Mario<br>< | -IM-2     |       | Mario        | 50. Q factor                                               |
| Stan 2 Start Calculation    |            |           |       |              | Center of Percussion Effect                                |
| Construct Model             |            |           |       |              |                                                            |



|                                       | New Horizontal Flexure                                                          |
|---------------------------------------|---------------------------------------------------------------------------------|
| Model construction / Step 2. / Set IP | Edit Inverted Pendulum                                                          |
| • • •                                 | IP Name                                                                         |
| Name                                  |                                                                                 |
| Desition of the ID                    | Choose Base and Top Bodies                                                      |
| FOSICION OF CHE IF                    | Position of IPs in Horizontal Plane                                             |
|                                       | Calculate IP Position                                                           |
| Position of the IP leas               | x [mm] z [mm]                                                                   |
| Fosition of the IF legs               | Leg2 -304.99528.27-                                                             |
|                                       | Length of IP Legs                                                               |
| Length of the IP leg                  |                                                                                 |
|                                       | Load Mass                                                                       |
|                                       | Calculate from Suspended Bodies                                                 |
| Load mass on the IP                   | 849.9 kg                                                                        |
|                                       | Effective Stiffness and Quality Factor                                          |
|                                       | Calculate stiffness from Resonant Frequency                                     |
| Effective bending stiffness           | Leg1         71.579-         10                                                 |
| of bottom flexure                     | Leg2 71.579- 10<br>Leg3 71.579- 10                                              |
| of bottom nexure                      | Additional yaw stiffness due to Rigidity of flexures                            |
| Additional tarsion stiffnass          | Stiffness [Nm/rad]         Q-factor           Torsion         35.         1000. |
| Additional torsion stimess            | Center of Percussion Level                                                      |
|                                       | ✓ -80 dB                                                                        |
| COP level                             | ✓ Overcompensated                                                               |
|                                       | Finish 100% A                                                                   |

### Model construction / Step 2. / Damper

| Set Eddy                            | 2-5 Set Damper                                                                                                                                                                                                                                                           |                           |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Set Damper                          |                                                                                                                                                                                                                                                                          |                           |
| tep 2. Set Connec Create New Damper |                                                                                                                                                                                                                                                                          |                           |
| Del Copy Edit                       | Name Body1 Body2 Damping Point in Body1 [mm] Damping P                                                                                                                                                                                                                   |                           |
| Material Properties                 |                                                                                                                                                                                                                                                                          | ^                         |
| 1 Save Cance                        | * New Heat Links                                                                                                                                                                                                                                                         | x                         |
| ) whes                              | New Damper                                                                                                                                                                                                                                                               |                           |
| z<br>t Vertical Spring              | Name                                                                                                                                                                                                                                                                     |                           |
| 3                                   |                                                                                                                                                                                                                                                                          |                           |
| Inverted Pendu                      | Damping Between:                                                                                                                                                                                                                                                         |                           |
| 4                                   | Body1: MD - Body2: F1 Position                                                                                                                                                                                                                                           | n of the Eddy current dan |
| t Heat Links                        | Position of Damper                                                                                                                                                                                                                                                       |                           |
| 5 t Damper                          | Body1: 010. 0 Pushing point                                                                                                                                                                                                                                              |                           |
| •                                   | Damping Strength Matrix                                                                                                                                                                                                                                                  |                           |
| ep 3. Start Calculation             | x     y     z     Pitch     Yaw     Roll       x     50     0     0     0     0       y     0     125     0     0     0       z     0     0     50     0     0       Pitch     0     0     0     2       Pitch     0     0     0     2       Yaw     0     0     0     2 | strength matrix           |
| Construct Model                     | Finish 75%                                                                                                                                                                                                                                                               | %                         |

### Model construction / Step 3.

#### 1) Start the calculation, by clinking here

| Set Material Properties<br>2–1<br>Set Wires<br>2–2<br>Set Vertical Springs<br>2–3<br>Set Inverted Pendulum<br>2–4<br>Set Heat Links<br>2–5<br>Set Damper | Wire:<br>Name<br>F0-MD-1<br>F0-MD-2<br>F0-MD-3<br>F0-SF1-1<br>SF1-SF2-1<br>SF2-SF3-1<br>SF3-BF-1<br>BF-PF-1<br>PF-Mario-1<br>PF-RMario-2<br>PF-RMario-3<br>Mario-IM-1<br>Mario-IM-2 | Body1<br>F0<br>F0<br>F0<br>SF1<br>SF2<br>SF3<br>BF<br>PF<br>PF<br>PF<br>PF<br>PF<br>Mario<br>Mario | Body2<br>MD<br>MD<br>SF1<br>SF2<br>SF3<br>BF<br>PF<br>Mario<br>RMario<br>RMario<br>RMario<br>IM<br>IM | Material<br>Maraging Steel<br>Maraging Steel | L [m]<br>1.9398<br>1.9398<br>2.26566<br>2.26644<br>2.26711<br>2.36766<br>3.3877<br>0.406237<br>0.227468<br>0.227468<br>0.227468<br>0.227468<br>0.227468<br>0.227468<br>0.227468 | D [mm]<br>2.<br>2.<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4.5<br>4. | ~ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---|
| Step 3. Start Calculation<br>Construct Model                                                                                                             | Start ca                                                                                                                                                                            | alcula                                                                                             | tion, l                                                                                               | oy pushing                                                                                                                                                                                                                                                                                                                                                     | here!                                                                                                                                                                           |                                                                                         |   |

### Model construction / Step 3.

1) In the end, you can get the frequency response, and its eigen mode shapes!

| * |                                                     |                                                     |                    |                                         | :     | SUMCON \                                         | /ersion | :1.32                              |                  |                                    |             |                                     | ×         |              |                                |            |
|---|-----------------------------------------------------|-----------------------------------------------------|--------------------|-----------------------------------------|-------|--------------------------------------------------|---------|------------------------------------|------------------|------------------------------------|-------------|-------------------------------------|-----------|--------------|--------------------------------|------------|
| , | Frequency Doma                                      | in Plot Tool                                        |                    |                                         |       |                                                  |         |                                    |                  |                                    |             |                                     |           |              | You can click anywhe           | re!        |
|   | Frequency Resp                                      | once to Ground                                      | Motion             | <b>•</b>                                | Set S | Geismic Spe                                      | ctrum   |                                    |                  |                                    |             |                                     |           |              | Please play with this          | tool!      |
|   | Frequency Resp<br>Frequency Resp<br>Seismic Noise F | once to Externa<br>once to Ground<br>lot            | al Force<br>Motion | /Torque                                 | pitcł | ng 🗌                                             | yawg    | 🗌 rollg                            | )                |                                    |             |                                     |           |              | ( Some stuffs are to b         | e added. ) |
|   | Thermal Noise                                       | Plot<br>pitchMD<br>pitchSF1<br>pitchSF2<br>pitchSF3 |                    | yawMD<br>yawSF1<br>yawSF2<br>yawSF3     |       | yawF0<br>rollMD<br>rollSF1<br>rollSF2<br>rollSF3 |         | xMD<br>xSF1<br>xSF2<br>xSF3<br>xBF |                  | yMD<br>ySF1<br>ySF2<br>ySF3<br>yBF |             | zMD<br>zSF1<br>zSF2<br>zSF3<br>zBE  |           |              |                                |            |
|   |                                                     | pitchBF<br>pitchPF<br>pitchRMario<br>pitchRMario    |                    | yawBF<br>yawPF<br>yawRMario<br>yawMario |       | rollBF<br>rollPF<br>rollRMario<br>rollMario      |         | xPF<br>xRMario<br>xMario<br>xIRM   |                  | yPF<br>yRMario<br>yMario<br>yIRM   |             | Mainly, yo<br>* Force Tr            | ou<br>ans | Ci<br>St     | an plot(get) ;<br>fer function |            |
|   |                                                     | pitchIM<br>pitchRM<br>pitchTM                       |                    | yawIM<br>yawRM<br>yawTM                 |       | rollIM<br>rollRM<br>rollTM                       |         | xRM<br>xTM                         |                  | уRM<br>уTM                         |             | * Displace<br>* Seismic<br>* Thorma | no        | e<br>jis     | nt Transfer function<br>se     |            |
|   | Frequency:                                          | 0.01 -                                              | 10                 | 00.                                     | Step: | 1001                                             |         | ] Logarit                          | thmic<br>dd Plot | Lin                                | ear<br>Plot | * Eigen fr<br>* Eigen m             | equ<br>od | u<br>u<br>le | ency<br>shape                  |            |
| < | 0.1                                                 |                                                     |                    |                                         |       | TM/ve For                                        |         |                                    | ) Sh             | ow Legend                          |             | 100%                                | ><br>▲:   |              |                                |            |

|          | <u>cun con</u>                          | 7              |                          | SUMCO                      | N Version:1.32         |                        |         |  |  |
|----------|-----------------------------------------|----------------|--------------------------|----------------------------|------------------------|------------------------|---------|--|--|
| For      | spension odel structo                   | or in Mathemat | ica 🥰                    | About                      | SUMCON Versi           | on Info                | Reflesh |  |  |
| FOr      | -                                       |                |                          |                            |                        |                        |         |  |  |
| example, | New Model                               | oad Model      | Save Model               | TypeB1¥150                 | 0723_TypeB1_Proto.     | m                      |         |  |  |
|          |                                         |                |                          |                            |                        |                        |         |  |  |
|          | Model Construct                         | tion Calculat  | tion Result E            | xport Model                |                        |                        |         |  |  |
|          | Model Basic Inf                         |                |                          |                            |                        |                        |         |  |  |
|          | Degrees of Free                         | dom:           |                          |                            |                        |                        |         |  |  |
|          | 45 State Varia                          | ables          |                          |                            |                        |                        |         |  |  |
|          | 6 Input Varia                           | ables          |                          |                            |                        |                        |         |  |  |
|          | 3 Float Varia                           | bles           |                          |                            |                        |                        |         |  |  |
|          | Course of Description                   |                |                          |                            |                        |                        |         |  |  |
|          | Ground Position                         |                | nitcha . 0               |                            | rolla . O              |                        |         |  |  |
|          | $xg \rightarrow 0$ . $yg \rightarrow 0$ | . 2g → 0.      | pitcing $\rightarrow$ 0. | yawg → 0.                  | rolig → 0.             |                        |         |  |  |
|          | Equilibrium Poir                        | nt:            |                          |                            |                        |                        |         |  |  |
|          | xF0 → 0. z                              | zF0 → 0.       | yawF0 → 0.               | $\times MD \rightarrow 0.$ | yMD → -0.572           | $zMD \rightarrow 0.$   |         |  |  |
|          | pitchMD $\rightarrow$ 0.                | yawMD → 0.     | rollMD $\rightarrow$ 0.  | xF1 → 0.                   | yF1 → -0.665           | $zF1 \rightarrow 0.$   |         |  |  |
|          | pitchF1 $\rightarrow$ 0.                | yawF1 → 0.     | rollF1 $\rightarrow$ 0.  | xF2 → 0.                   | yF2 → -1.1984          | zF2 → 0.               |         |  |  |
|          | pitchF2 $\rightarrow$ 0. y              | yawF2 → 0.     | rollF2 $\rightarrow$ 0.  | $xIR \rightarrow 0.$       | yIR → -1.6936          | $zIR \rightarrow 0.$   |         |  |  |
|          | pitchIR $\rightarrow 0$ . y             | yawIR → 0.     | rollIR $\rightarrow 0$ . | $\times IM \rightarrow 0.$ | yIM → -1.7699          | $zIM \rightarrow 0.$   |         |  |  |
|          | pitchIM $\rightarrow 0$ . y             | yawIM → 0.     | rollIM $\rightarrow 0$ . | $\times RM \rightarrow 0.$ | yRM → -2.3569          | $zRM \rightarrow 0.$   |         |  |  |
|          | pitchRM $\rightarrow 0$ . y             | yawRM → 0.     | rollRM $\rightarrow 0$ . | $XIM \rightarrow 0.$       | y1M → -2.3569          | $ZIM \rightarrow 0.$   |         |  |  |
|          | pitch $I M \rightarrow 0$ .             | yawım → 0.     | $roll IM \rightarrow 0.$ | $nGASU \rightarrow 0.$     | $NGASI \rightarrow 0.$ | $nGAS2 \rightarrow 0.$ |         |  |  |
|          |                                         |                |                          |                            |                        |                        |         |  |  |
|          |                                         |                |                          |                            |                        |                        |         |  |  |
|          |                                         |                |                          |                            |                        |                        |         |  |  |
|          |                                         |                |                          |                            |                        |                        |         |  |  |







