

Development and test of an absorption bench to characterize the KAGRA mirrors

Marchiò Manuel Tatsumi Daisuke Flaminio Raffaele

71° JPS Meeting 2016 年 3 月 21 日

MOTIVATION:

3 km

- The gravitational wave detector KAGRA will operate at cryogenic temperature (20K) to reduce thermal noise.
- Sapphire mirrors will be used for its good thermal properties.
- Need to minimize mirror optical absorption to make cryogenic operation as easy as possible.

3 km

KAGRA

km

OBJECTIVES:

- Measure optical absorption of KAGRA substrates and coatings
- Investigate new mirror materials for future upgrades – crystalline coatings.

STEPS

- Setup absorption experiment
- Validate calibrations
- Simulations
- Absorption measurements

fringe pattern

Absorption measurement system Experimental setup features:

- Scan along the sample depth
- 2D maps of the surface and inside the substrate
- Pump power up to 10W
- Best sensitivity:
 - 1 ppm/cm for bulk absorption
 - 0.1ppm for surface absorption

Scans of known absorption samples give the calibration

- Calibration factors change for different materials because of different thermal diffusivity
- Lack of some reference samples for other materials
- SIMULATIONS ARE NEEDED TO CALCULATE THE CORRECTION FACTOR

Simulations:

1. Heat equation solution inside the sample

Reference samples simulation and measurements

Simulations

 4.4 ± 1.4

MEASUREMENTS

Measurements

3.9±0.7

SIMULATIONS

- Good match between measurements and simulations.
- There is a different scale factor which depends on signal amplification and demodulation in the Lock-in amplifier. But it is not relevant for the physics of the model.
- The important thing is the ratio between surface and bulk absorption, that cancels this scale factor out.

Crystalline coating absorption

- Crystalline coatings are candidates for future upgrades of KAGRA to reduce coating thermal noise.
- AlGaAs coatings are attached on GaAs substrate.

 The idea is to measure the calibration of bulk absorption of GaAs and use the simulation to calculate the calibration of surface absorption.

RESULT: For same amount of absorption but different distribution we get the same signal

Measurements results:

SURFACE ABSORPTION MAP

High reflection coating on silica substrate:

BULK ABSORPTION MAP

The material of this sample is not homogeneous: range from 30 to 240 ppm/cm

Next upgrades of the absorption measurement system

• Install a large translation stage to measure bigger mirrors

• Install different mounts for different sizes

→ 1 to 2 inches

 → Ø100mm x 60mm (Tama300 size)

 Ø220mm x 150mm (KAGRA size)

• Install a 1310 nm laser probe to measure GaAs samples

Conclusions:

- The absorption system works fine, with a sensitivity better than 1ppm/cm.
- We measured the absorption scan and maps of small silica and sapphire samples.
- By using the simulation we calculated the calibration correction factor between GaAs substrates and AlGaAs crystalline coated samples.
- We will install 1310nm laser probe to measure GaAs samples
- We will install large translation stage to measure the absorption of KAGRA mirrors

Thank you for the attention

