TypeBp SAS Study - ☐ Frequency response investigation of typeBpp - ☐ One modification idea for bKAGRA PR SAS Yoshinori Fujii U. of Tokyo / NAOJ #### **Contents** - **♦ Intro: PR SAS** - TypeBp / TypeBpp - ☐ Investigation of TypeBpp Frequency response - ☐ Transfer functions / Spectra - One modification idea for bKAGRA - **□** Requirement - □ TypeBp with IP **Current bKAGRA PR SAS = TypeBp** # **♦** Intro: PR SAS in bKAGRA (TypeBp) PR TMs are required: - 1) disp. $< 10^{-15}$ m/rtHz at 10 Hz - 2) RMS velocity < 0.5 um/s - 3) RMS angular fluct. < 1 urad RM / TM **Current bKAGRA PR SAS = TypeBp** # **♦** Intro: PR SAS in bKAGRA (TypeBp) PR TMs are required: - 1) disp. $< 10^{-15}$ m/rtHz at 10 Hz - 2) RMS velocity < 0.5 um/s - 3) RMS angular fluct. < 1 urad #### **Problems:** Whole suspension mode cannot be damped enough. RMS velocity cannot reach lower than 0.7 um/s, because of seismic noise. #### **♦ Intro: PR SAS in iKAGRA (TypeBpp)** (We have to modify this SAS design to meet the bKAGRA requirements.) ### Intro: PR SAS in iKAGRA (TypeBpp) #### PR TMs are required: - 1) disp. < 10⁻¹⁵ m/rtHz at 10 Hz - 2) RMS velocity < 0.5 um/s - 3) RMS angular fluct. < 1 urad | ТуреВр | ТуреВрр | |----------------------------------|----------------------------------| | meet | Not meet | | ~ 5 um/sec (with ctrl) | ~ 1 um/sec (with ctrl) | | $^{\sim}$ 1.4 urad (with ctrl) | $^{\sim}$ 0.4 urad (with ctrl) | Also, RMS seismic velocity can be ~ 0.7 um/sec Intro: PR SAS in iKAGRA (TypeBpp) Now, we are constructing with real mirror. iKAGRA PR SAS = TypeBpp (= TypeBp without SF) ### **♦ Intro : PR SAS / Main topic of this talk** Trequency response investigation of the TypeBpp SAS(, which we constructed in the tunnel) 2 One modification idea for bKAGRA PR SAS How do we meet both (displacement and RMS) requirements? #### **Contents** - ☐ Intro: PR SAS ☐ TypeBp / TypeBpp - Investigation of TypeBpp Frequency response - Transfer functions / Spectra - One modification proposal for bKAGRA - requirement - □ TypeBp with IP Transfer functions \rightarrow IM (L, P, R), TM (L,P,Y) Spectrums \rightarrow BF (V), IM (L, P, R, V), TM (L, P, Y) Measured by Oplev and OSEMs (The others → measured by OSEMs) #### Not Measured DoF: Transfer functions \rightarrow BF(V), IM (T, V, Y) Spectrums → IM (T, Y) Vertical Length (Roll) (Yaw) Transverse (Pitch) #### LIM (OSEM) TF #### REF: LIM (OSEM) TF of 20 m SAS #### PIM (OSEM) TF #### REF: PIM (OSEM) TF of 20 m SAS Resonance frequency is lower than its prediction by around 1 Hz. To be investigated. RIM (OSEM) TF #### REF: RIM (OSEM) TF of 20 m SAS PTM (OSEM) TF #### REF: PTM (OSEM) TF in 20 m SAS **♦ Investigation of TypeBpp Frequency response**REF: PTM (Oplev) TF of Type B1 PTM (Oplev) TF YTM (OSEM) TF #### REF: LTM (OSEM) TF of 20 m SAS YTM (Oplev) TF #### **REF: YTM (Oplev) TF of Type B1** #### Note: Transfer function (measured in the chamber) **□** Resonance frequency shift : → CoM position of the IM. #### Note: Transfer function (measured in the chamber) **□** Resonance frequency shift : \rightarrow we changed the wire diameter to thicker one (600 -> 650 um) to increase the resonance frequency for robust control, Pitch IM, RM (after TypeB proto exp.) However, the frequency is still low, for some reason. suspended by 3 wires? #### IM More thinner IM-RM wires, and More wider wire separation is better. #### Note: Transfer function (measured in the chamber) - ☐ Resonance frequency shift: - \Box | $\overset{\circ,334Hz}{\longrightarrow}$ | $\overset{\text{Mee}}{\longrightarrow}$ | $\overset{\circ,376Hz}{\longrightarrow}$ $\overset{\circ,376Hz$ - Pitch, Roll IM → Though wire diameter was increased, the resonance frequency is still lower than its prediction by 1 Hz. Not "4 wires", but "3 wires"? The wire separation in our model seems to be wider than its actual system. \square Small mechanical Q factor? \rightarrow to be investigated, resonance by resonance. #### **BF (LVDT) Spectra** #### IM (OSEM) Spectra #### TM (OSEM) Spectra REF: LIM (OSEM) **Spectra** of 20 m SAS LIM (OSEM) Spectra of PR3 SAS Power spectrum **REF: PIM (OSEM)** Spectra of 20 m SAS PIM (OSEM) Spectra of PR3 SAS REF: RIM (OSEM) **Spectra** Power spectrum **REF: VIM (OSEM)** Spectra REF: TM (OSEM) **Spectra** REF: TM (OSEM) Spectra REF: TM (OSEM) Spectra of 20 m SAS YTM (OSEM) Spectra of PR3 SAS # PTM (OSEM) Spectra of PR3 SAS Measured #### Note: Spectra (measured in the chamber) - ☐ The difference in factor can be occurred due to rough calibration. - \square Mode Identification \rightarrow To be completed. - \square Small Quality factors \rightarrow To be investigated. - □ DoF coupling → diagonalize actuator matrix 36 # **Contents** - ☐ Intro: PR SAS - ☐ TypeBp / TypeBpp - □ Investigation of TypeBpp SAS frequency response - ☐ Transfer functions / Spectra - One modification idea for bKAGRA - Requirement - **❖** TypeBp with IP One modification idea for bKAGRA / Requirement PR TMs are required: 1) disp. $< 10^{-15}$ m/rtHz at 10 Hz 2) RMS velocity < 0.5 um/s 3) RMS angular fluct. < 1 urad | ТуреВрр | ТуреВр | |----------------------------------|-------------------------------| | Not meet | meet | | ~ 1 um/sec (with ctrl) | ~ 5 um/sec (with ctrl) | | $^{\sim}$ 0.4 urad (with ctrl) | $^{\sim}$ 1.4 urad (w ctrl) | Also, RMS seismic velocity can be ~ 0.7 um/sec ## To attenuate the micro seismic noise -> Add Inverted Pendulum (IP) #### In principle, the IP, such as used in TypeB1, (its length is ~ 500 mm) will be able to be implemented. #### To attenuate the micro seismic noise -> Add Inverted Pendulum (IP) This time, I added "typeB1 IP" to typeBp. Assuming: - 1) add weight of 572 kg on the IP stage - 2) Set IP at position of 560 mm from the CoM (In TypeB1 -> 610 mm) ### To attenuate the micro seismic noise -> Add Inverted Pendulum (IP) Compensation mass If SUS is used. (density ≡ 7.8 g/cm) # IP modeling parameter: - 1) Load on IP - 2) Horizontal distance of leg from CoM - 3) Leg length - 4) L,T resonance frequency (-> depends on bottom flexure) - 5) Q factor of bottom flexure - 6) Saturation level - 7) Additional torsion stiffness (-> depends on top flexure) Needed preparation Needed preparation - ☐ If the TypeB1 IP will be implemented, Load have to be added more (~ 500 kg) to current TypeBp. - (Or, we should shrink the bottom flexure diameter.) = IP + SF + BF + IR/IM + RM/TM # TM displacement of TypeBp with IP # **Comparison** = IP + SF + BF + IR/IM + RM/TM By LVDT Damping Dc Damp Damping Damping by OSEMs by OSEMs & Oplev = IP + SF + BF + IR/IM + RM/TM By LVDT by LVDT Damping Dc Damp Damping Damping by OSEMs by OSEMs & Oplev **Lock aquisition phase:** LF1, TF1, YF1, VF1, VF2, RIM, PIM, YIM, OplevPIM, OplevYIM → Controls ON Damaping phase: LF1, TF1, YF1, **VF1, VF2,** LIM, TIM, VIM, RIM, PIM, YIM, OplevPIM, OplevYIM LTM, PTM, YTM → Controls ON RMS velocity: 0.24 um/sec RMS pitch: 0.11 urad Bp : 5.3 um/s Bpp: 1.3 um/s This SAS seems to meet all the three PR SAS requirements. # One modification idea for bKAGRA In addition, Damping performance in damping phase # PR TMs are required: 1/e damping time < 1 min. **TypeBpp** **TypeBp** TypeBp with IP # One modification idea for bKAGRA In addition, Damping performance in damping phase # PR TMs are required: 1/e damping time < 1 min. **TypeBpp** TypeBp with IP - ☐ TypeBpp SAS frequency responses are investigated. - → Mostly, the responses follow their predictions. (RM Pitch problem is still remains.) - → Quality factors should be investigated more in detail. - **□** We have to modify the current TypeBp SAS. - → If the current TypeBp SAS has IP, such as implemented to TypeB prototype at least, it can meet the PR SAS requirements. We should take IP back! (, if possible, I think.) # Thank you for your attention. # Back up ### **TypeBpp** #1 : YPen YIM, YRM, **YTM** #2 : RPen RIM, RRM, **RTM** #3 : PTM PIM, -PRM, -PTM #4: VPen VIM, VRM, **VTM** #5 : TPen **Pendulum** #6: LPen Pendulum #7: PTM LTM, -PTM #8: TTM,-RM TM, -TRM, etc #9: PTM **PTM** #10: YIR #11 : YTM -YIM, YRM **YTM** #12 : TRM TRM #### **TypeBpp** **#13: LRM #19: RTM LRM** RRM, -RTM #14 :TIM #20:VIM VIM, VRM TIM, etc **#21: RIM** #15 : LIM LIM, etc RIM, -RRM #16: YTM #22 : RIR YIM, -YRM, RIR -YTM #23 : PIR **#17: PIM** PIR PIM, -PRM #24: VIR #18: VTM **VIR** -VIM, -VRM, **VTM** #### **TypeBp** #1 : YPen YIM, YRM, YTM, YF2, YIR #2: YPay YIM, YRM, YTM #3: VPay VIM, VRM, VTM #4: RPay RIM, RRM, RTM #5 : PPay PIM, PRM, <u>PTM</u> #6: TPen Pendulum #7: LPen Pendulum #8: VF2, VIR VF2, VIR, VPay #9 : RF2, RIR RF2, RIR, TIP #10 : PF2, PIR PF2, PIR, LIR #11 : L deff LRM, -LTM PTM #12 : T deff TRM, -TTM, RIM, RRM, RTM #### **TypeBp** #13 : PTM #19 : LPen **PTM Pendulum** #14 :TPen #20 : TPen **Pendulum Pendulum** #21 : LPen #15 : LPen **Pendulum Pendulum** #22 : YTM **#16:YTM** YIM, -IRM, YIM, -YRM, -YTM **YTM #23: PIM #17: YIR** -PIM, PRM YIR, #24 : VTM #18: TPen -VIM, -VRM, **Pendulum** **VTM** ## **TypeBp** #25 : RTM -RRM, RTM #26 : VRM -VIM, VRM #27 : RIM -RIM, RRM #28: YTM YIM, -YRM, -YTM #29 : PIM PIM, -PRM #30: VTM -VIM, -VRM, **VTM** # Investigation of TypeBpp Frequency response #### According to SUMCON, # Investigation of TypeBpp Frequency response - model IM wire separation contributes to resonance frequency of Roll IM, Roll RM. Frequency [Hz] #### typeBpp_160108v2adj #### typeBpp_160108v2adj #### typeBpp_160108v2adj #### Measurement #### LTM Spectrum in iKAGRA with no control #### Measurement ### IM, TM (OSEM) Spectrum in iKAGRA with no control #### Measurement REF: TM (OSEM) Spectrum in 20 m TM (OSEM) Spectrum in iKAGRA #### From http://gwdoc.icrr.u-tokyo.ac.jp/DocDB/0039/T1503908/002/TypeBpDesign.pdf #### Seismic noise level at the Kamioka site The seismic displacement and velocity we used is shown in Fig.2 and ??[2]. This is the one called high-noise model. The seismic displacement in Kamioka is below this level for 90 % of time. Figure 1: The high-level seismic displacement in Kamioka. Figure 2: The high-level seismic velocity in Kamioka. # IP modeling parameter: Load on IP M [kg] Leg length L [m] Resonant frequency $\omega_{\mathbb{P}}$ [rad/s] Additional torsion stiffness k_t \rightarrow For top flexure : $kt \rightarrow d_{top}$ L, T \rightarrow For bottom flexure : $Mc \rightarrow k\theta \rightarrow d_{bottom}$ ## IP modeling parameter: ## IP modeling parameter: TypeB TypeBp? proto 10.5 mm \rightarrow 9.7 mm \rightarrow 7.8 mm Mc ~1000 kg Mc ~ 860 kg Mc ~ 280 kg