TypeBp SAS Study

- ☐ Frequency response investigation of typeBpp
- ☐ One modification idea for bKAGRA PR SAS

Yoshinori Fujii U. of Tokyo / NAOJ

Contents

- **♦ Intro: PR SAS**
 - TypeBp / TypeBpp
- ☐ Investigation of TypeBpp Frequency response
 - ☐ Transfer functions / Spectra
- One modification idea for bKAGRA
 - **□** Requirement
 - □ TypeBp with IP

Current bKAGRA PR SAS = TypeBp

♦ Intro: PR SAS in bKAGRA (TypeBp) PR TMs are required:

- 1) disp. $< 10^{-15}$ m/rtHz at 10 Hz
- 2) RMS velocity < 0.5 um/s
- 3) RMS angular fluct. < 1 urad

RM / TM

Current bKAGRA PR SAS = TypeBp

♦ Intro: PR SAS in bKAGRA (TypeBp) PR TMs are required:

- 1) disp. $< 10^{-15}$ m/rtHz at 10 Hz
- 2) RMS velocity < 0.5 um/s
- 3) RMS angular fluct. < 1 urad

Problems:

Whole suspension mode cannot be damped enough.

RMS velocity cannot reach lower than 0.7 um/s, because of seismic noise.

♦ Intro: PR SAS in iKAGRA (TypeBpp)

(We have to modify this SAS design to meet the bKAGRA requirements.)

Intro: PR SAS in iKAGRA (TypeBpp)

PR TMs are required:

- 1) disp. < 10⁻¹⁵ m/rtHz at 10 Hz
- 2) RMS velocity < 0.5 um/s
- 3) RMS angular fluct. < 1 urad

ТуреВр	ТуреВрр
meet	Not meet
~ 5 um/sec (with ctrl)	~ 1 um/sec (with ctrl)
$^{\sim}$ 1.4 urad (with ctrl)	$^{\sim}$ 0.4 urad (with ctrl)

Also, RMS seismic velocity can be ~ 0.7 um/sec

Intro: PR SAS in iKAGRA (TypeBpp)

Now, we are constructing with real mirror.

iKAGRA PR SAS = TypeBpp (= TypeBp without SF)

♦ Intro : PR SAS / Main topic of this talk

Trequency response investigation of the TypeBpp SAS(, which we constructed in the tunnel)

2 One modification idea for bKAGRA PR SAS

How do we meet both (displacement and RMS) requirements?

Contents

- ☐ Intro: PR SAS
 ☐ TypeBp / TypeBpp
- Investigation of TypeBpp Frequency response
 - Transfer functions / Spectra
- One modification proposal for bKAGRA
 - requirement
 - □ TypeBp with IP

Transfer functions \rightarrow IM (L, P, R), TM (L,P,Y)

Spectrums \rightarrow BF (V), IM (L, P, R, V), TM (L, P, Y)

Measured by Oplev and OSEMs (The others → measured by OSEMs)

Not Measured DoF:

Transfer functions \rightarrow BF(V), IM (T, V, Y)

Spectrums → IM (T, Y)

Vertical

Length (Roll)

(Yaw)

Transverse (Pitch)

LIM (OSEM) TF

REF: LIM (OSEM) TF of 20 m SAS

PIM (OSEM) TF

REF: PIM (OSEM) TF of 20 m SAS

Resonance frequency is lower than its prediction by around 1 Hz.

To be investigated.

RIM (OSEM) TF

REF: RIM (OSEM) TF of 20 m SAS

PTM (OSEM) TF

REF: PTM (OSEM) TF in 20 m SAS

♦ Investigation of TypeBpp Frequency responseREF: PTM (Oplev) TF of Type B1

PTM (Oplev) TF

YTM (OSEM) TF

REF: LTM (OSEM) TF of 20 m SAS

YTM (Oplev) TF

REF: YTM (Oplev) TF of Type B1

Note: Transfer function (measured in the chamber)

□ Resonance frequency shift :

→ CoM position of the IM.

Note: Transfer function (measured in the chamber)

□ Resonance frequency shift :

 \rightarrow we changed the wire diameter to thicker one (600 -> 650 um) to increase the resonance frequency for robust control,

Pitch IM, RM

(after TypeB proto exp.) However, the frequency is still low, for some reason.

suspended by 3 wires?

IM

More thinner
IM-RM wires,
and
More wider
wire separation
is better.

Note: Transfer function (measured in the chamber)

- ☐ Resonance frequency shift:
 - \Box | $\overset{\circ,334Hz}{\longrightarrow}$ | $\overset{\text{Mee}}{\longrightarrow}$ | $\overset{\circ,376Hz}{\longrightarrow}$ | $\overset{\circ,376Hz$
 - Pitch, Roll IM

→ Though wire diameter was increased, the resonance frequency is still lower than its prediction by 1 Hz. Not "4 wires", but "3 wires"?

The wire separation in our model seems to be wider than its actual system.

 \square Small mechanical Q factor? \rightarrow to be investigated, resonance by resonance.

BF (LVDT) Spectra

IM (OSEM) Spectra

TM (OSEM) Spectra

REF: LIM (OSEM)

Spectra

of 20 m SAS

LIM (OSEM)
Spectra
of PR3 SAS

Power spectrum

REF: PIM (OSEM)

Spectra

of 20 m SAS

PIM (OSEM) Spectra of PR3 SAS

REF: RIM (OSEM)

Spectra

Power spectrum

REF: VIM (OSEM)

Spectra

REF: TM (OSEM)

Spectra

REF: TM (OSEM)

Spectra

REF: TM (OSEM)

Spectra

of 20 m SAS

YTM (OSEM) Spectra of PR3 SAS

PTM (OSEM) Spectra of PR3 SAS

Measured

Note: Spectra (measured in the chamber)

- ☐ The difference in factor can be occurred due to rough calibration.
- \square Mode Identification \rightarrow To be completed.
- \square Small Quality factors \rightarrow To be investigated.
- □ DoF coupling → diagonalize actuator matrix

36

Contents

- ☐ Intro: PR SAS
 - ☐ TypeBp / TypeBpp
- □ Investigation of TypeBpp SAS frequency response
 - ☐ Transfer functions / Spectra
- One modification idea for bKAGRA
 - Requirement
 - **❖** TypeBp with IP

One modification idea for bKAGRA / Requirement

PR TMs are required:

1) disp. $< 10^{-15}$ m/rtHz at 10 Hz

2) RMS velocity < 0.5 um/s

3) RMS angular fluct. < 1 urad

ТуреВрр	ТуреВр
Not meet	meet
~ 1 um/sec (with ctrl)	~ 5 um/sec (with ctrl)
$^{\sim}$ 0.4 urad (with ctrl)	$^{\sim}$ 1.4 urad (w ctrl)

Also, RMS seismic velocity can be ~ 0.7 um/sec

To attenuate the micro seismic noise -> Add Inverted Pendulum (IP)

In principle,

the IP, such as used in TypeB1, (its length is ~ 500 mm) will be able to be implemented.

To attenuate the micro seismic noise -> Add Inverted Pendulum (IP)

This time, I added "typeB1 IP" to typeBp. Assuming:

- 1) add weight of 572 kg on the IP stage
- 2) Set IP at position of 560 mm from the CoM

(In TypeB1 -> 610 mm)

To attenuate the micro seismic noise -> Add Inverted Pendulum (IP)

Compensation mass
If SUS is used.
(density ≡ 7.8 g/cm)

IP modeling parameter:

- 1) Load on IP
- 2) Horizontal distance of leg from CoM
- 3) Leg length
- 4) L,T resonance frequency (-> depends on bottom flexure)
- 5) Q factor of bottom flexure
- 6) Saturation level
- 7) Additional torsion stiffness (-> depends on top flexure)

 Needed preparation

 Needed preparation
- ☐ If the TypeB1 IP will be implemented, Load have to be added more (~ 500 kg) to current TypeBp.
- (Or, we should shrink the bottom flexure diameter.)

= IP + SF + BF + IR/IM + RM/TM

TM displacement of TypeBp with IP

Comparison

= IP + SF + BF + IR/IM + RM/TM

By LVDT

Damping Dc Damp Damping Damping by OSEMs by OSEMs & Oplev

= IP + SF + BF + IR/IM + RM/TM

By LVDT by LVDT

Damping Dc Damp Damping Damping by OSEMs by OSEMs & Oplev

Lock aquisition phase: LF1, TF1, YF1, VF1, VF2, RIM, PIM, YIM, OplevPIM, OplevYIM

→ Controls ON

Damaping phase: LF1, TF1, YF1, **VF1, VF2,** LIM, TIM, VIM, RIM, PIM, YIM, OplevPIM, OplevYIM LTM, PTM, YTM

→ Controls ON

RMS velocity: 0.24 um/sec

RMS pitch: 0.11 urad

Bp : 5.3 um/s

Bpp: 1.3 um/s

This SAS seems to meet all the three PR SAS requirements.

One modification idea for bKAGRA In addition, Damping performance in damping phase

PR TMs are required:

1/e damping time < 1 min.

TypeBpp

TypeBp

TypeBp with IP

One modification idea for bKAGRA In addition, Damping performance in damping phase

PR TMs are required:

1/e damping time < 1 min.

TypeBpp

TypeBp with IP

- ☐ TypeBpp SAS frequency responses are investigated.
 - → Mostly, the responses follow their predictions. (RM Pitch problem is still remains.)
 - → Quality factors should be investigated more in detail.
- **□** We have to modify the current TypeBp SAS.
 - → If the current TypeBp SAS has IP, such as implemented to TypeB prototype at least, it can meet the PR SAS requirements.

We should take IP back! (, if possible, I think.)

Thank you for your attention.

Back up

TypeBpp

#1 : YPen YIM, YRM,

YTM

#2 : RPen RIM, RRM, **RTM**

#3 : PTM PIM, -PRM, -PTM

#4: VPen VIM, VRM, **VTM**

#5 : TPen **Pendulum**

#6: LPen Pendulum

#7: PTM LTM, -PTM

#8: TTM,-RM

TM, -TRM, etc

#9: PTM **PTM**

#10: YIR

#11 : YTM -YIM, YRM **YTM**

#12 : TRM TRM

TypeBpp

#13: LRM #19: RTM LRM RRM, -RTM #14 :TIM #20:VIM VIM, VRM TIM, etc **#21: RIM** #15 : LIM LIM, etc RIM, -RRM #16: YTM #22 : RIR YIM, -YRM, RIR -YTM #23 : PIR **#17: PIM** PIR PIM, -PRM #24: VIR #18: VTM **VIR** -VIM, -VRM,

VTM

TypeBp

#1 : YPen YIM, YRM, YTM, YF2, YIR

#2: YPay YIM, YRM, YTM

#3: VPay
VIM, VRM,
VTM

#4: RPay RIM, RRM, RTM

#5 : PPay PIM, PRM, <u>PTM</u>

#6: TPen Pendulum #7: LPen
Pendulum

#8: VF2, VIR VF2, VIR, VPay

#9 : RF2, RIR RF2, RIR, TIP

#10 : PF2, PIR PF2, PIR, LIR

#11 : L deff
LRM, -LTM
PTM

#12 : T deff
TRM, -TTM,
RIM, RRM, RTM

TypeBp

#13 : PTM #19 : LPen **PTM Pendulum** #14 :TPen #20 : TPen **Pendulum Pendulum** #21 : LPen #15 : LPen **Pendulum Pendulum** #22 : YTM **#16:YTM** YIM, -IRM, YIM, -YRM, -YTM **YTM #23: PIM #17: YIR** -PIM, PRM YIR, #24 : VTM #18: TPen -VIM, -VRM, **Pendulum**

VTM

TypeBp

#25 : RTM -RRM, RTM

#26 : VRM

-VIM, VRM

#27 : RIM

-RIM, RRM

#28: YTM

YIM, -YRM,

-YTM

#29 : PIM

PIM, -PRM

#30: VTM

-VIM, -VRM,

VTM

Investigation of TypeBpp Frequency response

According to SUMCON,

Investigation of TypeBpp Frequency response

- model

IM wire separation contributes to resonance frequency of Roll IM, Roll RM.

Frequency [Hz]

typeBpp_160108v2adj

typeBpp_160108v2adj

typeBpp_160108v2adj

Measurement

LTM Spectrum in iKAGRA with no control

Measurement

IM, TM (OSEM) Spectrum in iKAGRA with no control

Measurement

REF: TM (OSEM)
Spectrum
in 20 m

TM (OSEM)
Spectrum
in iKAGRA

From http://gwdoc.icrr.u-tokyo.ac.jp/DocDB/0039/T1503908/002/TypeBpDesign.pdf

Seismic noise level at the Kamioka site

The seismic displacement and velocity we used is shown in Fig.2 and ??[2]. This is the one called high-noise model. The seismic displacement in Kamioka is below this level for 90 % of time.

Figure 1: The high-level seismic displacement in Kamioka.

Figure 2: The high-level seismic velocity in Kamioka.

IP modeling parameter:

Load on IP M [kg] Leg length L [m]

Resonant frequency $\omega_{\mathbb{P}}$ [rad/s]
Additional torsion stiffness k_t

 \rightarrow For top flexure : $kt \rightarrow d_{top}$

L, T \rightarrow For bottom flexure : $Mc \rightarrow k\theta \rightarrow d_{bottom}$

IP modeling parameter:

IP modeling parameter:

TypeB TypeBp? proto

10.5 mm \rightarrow 9.7 mm \rightarrow 7.8 mm

Mc ~1000 kg Mc ~ 860 kg Mc ~ 280 kg

