TypeBp SAS Study

GWPO meeting on 21th January, 2016

Contents

Intro : PR SAS
TypeBp / TypeBpp

Investigation of TypeBpp Frequeny response
Transfer functions / Spectrums

One modification idea for bKAGRA
 Requirement
 TypeBp with IP

Intro : PR SAS in bKAGRA (TypeBp) PR TMs are required :

Intro : PR SAS in bKAGRA (TypeBp) PR TMs are required :

Intro : PR SAS in iKAGRA (TypeBpp)

RMS velocity and RMS angular fluctuation get better.

We have to modify this SAS design to meet the bKAGRA requirements.

One modification idea for bKAGRA / Requirement

PR TMs are required :

1) disp. < 10⁻¹⁵m/rtHz at 10 Hz 2) RMS velocity < 0.5 um/s 3) RMS angular fluct. < 1 urad

ТуреВрр	ТуреВр
Not meet	meet
~ 1 um/sec (with ctrl)	~ 5 um/sec (with ctrl)
\sim 0.4 urad (with ctrl)	~ 1.4 urad (w ctrl)

Also, RMS seismic velocity can be ~ 0.7 um/sec

Intro : PR SAS / Main topic of this talk

 Frequency response investigation of the TypeBpp SAS
 (, which we constructed in the tunnel)

② One modification idea for bKAGRA PR SAS

How do we meet both (VI performance and RMS) requirements?

Contents

- Intro : PR SAS
 TypeBp / TypeBpp
- Investigation of TypeBpp Frequency response
 Transfer functions / Spectrums
- One modification proposal for bKAGRA
 requirement
 TypeBp with IP

KAGRA

LIM (OSEM) TF

REF : LIM (OSEM) TF of 20 m SAS

KAGRA

PIM (OSEM) TF

National Astronomica

REF : PIM (OSEM) TF of 20 m SAS

Investigation of TypeBpp Frequency response RIM (OSEM) TF REF : RIM (OSEM) TF of 20 m SAS

GWPO meeting on 21th January, 2016

Investigation of TypeBpp Frequency response LTM (OSEM) TF REF : LTM (OSEM) TF of 20 m SAS

Investigation of TypeBpp Frequency response PTM (OSEM) TF

REF : PTM (OSEM) TF in 20 m SAS

Investigation of TypeBpp Frequency response REF : PTM (Oplev) TF of Type B1

Investigation of TypeBpp Frequency response YTM (OSEM) TF

REF : LTM (OSEM) TF of 20 m SAS

GWPO meeting on 21th January, 2016

Investigation of TypeBpp Frequency response YTM (Oplev) TF REF : YTM (Ople

National Astronomical Observatory of Japan

fhe University of Tokyo

KAGRA

REF : YTM (Oplev) TF of Type B1

Note : Transfer function (measured in the chamber)

Resonance frequency shift :

Note : Transfer function (measured in the chamber)

Resonance frequency shift :

 10^{-2}

 10^{-2}

National Astronomica

180

 10^{-1}

 10^{-1}

 10^{0}

Frequency [Hz]

Pitch RM

→ we changed the wire diameter to thicker one (600 -> 650 um) to increase the resonance frequency for robust control,

measurement

(after TypeB proto exp.) However, the frequency is still low, for some reason.

suspended by 3 wires?

Note : Transfer function (measured in the chamber)

Resonance frequency shift :

 \Box Small mechanical Q factor? \rightarrow to be investigated, resonance by resonance.

BF (LVDT) Spectrum

IM (OSEM) Spectrum

TM (OSEM) Spectrum

National Astronomical Observatory of Japan

fhe University of Tokyo

GWPO meeting on 21th January, 2016

Power spectrum

10

REF : RIM (OSEM) Spectrum of 20 m SAS

r Damped R DAMPED RM R NODAMP

R NODAMP RM

Power spectrum

REF : TM (OSEM) Spectrum of 20 m SAS

LTM (OSEM)

Spectrum

of PR3 SAS

the University of Tokyo

30

THE UNIVERSITY OF TOKYO

Spectrum (measured in the chamber)

- **The difference in factor can be occurred due to rough calibration.**
- **I** LTM peak at around 1.3 Hz ?

п

Mostly, measured frequency responses follow their predictions.

☐ Quality factors of mechanical resonances seem to be small.
→ Quality factors (decay time, etc) should be investigated more in detail.

Contents

- Intro : PR SAS
 TypeBp / TypeBpp
- Investigation of TypeBpp SAS frequency response
 Transfer functions / Spectrums
- One modification idea for bKAGRA
 Requirement
 TypeBp with IP

One modification idea for bKAGRA / Requirement

PR TMs are required :

1) disp. < 10⁻¹⁵m/rtHz at 10 Hz 2) RMS velocity < 0.5 um/s 3) RMS angular fluct. < 1 urad

ТуреВрр	ТуреВр
Not meet	meet
~ 1 um/sec (with ctrl)	~ 5 um/sec (with ctrl)
\sim 0.4 urad (with ctrl)	\sim 1.4 urad (w ctrl)

Also, RMS seismic velocity can be ~ 0.7 um/sec

To attenuate the micro seismic noise \rightarrow Add Inverted Pendulum (IP)

IP modeling parameter :

- 1) Load on IP
- 2) Horizontal distance of leg from CoM
- 3) Leg length
- 4) L,T resonant frequency (\rightarrow depends on bottom flexure)
- 5) Q factor of bottom flexure
- 6) Saturation level
- 7) Additional torsion stiffness (→ depends on top flexure) Note
- If the TypeB1 IP will be implemented,
- Load have to be added more (~ 500 kg) to current TypeBp.
- Or, we should re-design the flexure (and also the weight)

♦ One modification idea for bKAGRA / TypeBp with IP To attenuate the micro seismic noise → Add Inverted Pendulum (IP)

This time, I added "typeB1 IP" to typeBp. assuming,

1) with adding weight of 572 kg

2) Set IP at position of 560 mm from the CoM

(In TypeB1 -> 610 mm)

= IP + SF + BF + IR/IM + RM/TM

GWPO meeting on 21th January, 2016

RMS velocity ~ 0.24um/sec RMS pitch ~ 0.11 urad

This SAS seems to meet all the three PR SAS requirements.

If geophones are added, the RMS can be reduce.

GWPO meeting on 21th January, 2016

One modification idea for bKAGRA In addition,

PR TMs are required :

1/e damping time < 1 min.

ТуреВрр

ТуреВр

TypeBp with IP

One modification idea for bKAGRA In addition,

Damping performance in damping phase

東京大学 HE UNIVERSITY OF TOKYO

PR TMs are required :

1/e damping time < 1 min.

TypeBpp SAS frequency responses are investigated.

- → Mostly, the responses follow their predictions. (RM Pitch problem is still remains.)
- \rightarrow Quality factors should be investigated more in detail.
- **We have to modify the current TypeBp SAS.**
 - → If TypeB IP is implemented to the current TypeBp SAS, the SAS can meet the PR SAS requirements.

Thank you for your attention.

GWPO meeting on 21th January, 2016

Back up

GWPO meeting on 21th January, 2016

Eigen Mode Shape TypeBpp

TypeBp Eigen Mode Shape

#1 : YPen #7 : LPen Pendulum #8 : VF2, VIR VF2, VIR, VPay **#9 : RF2, RIR** <u>RF2, RIR, TIP</u> #10 : PF2, PIR PF2, PIR, LIR **#11 : L deff** LRM, -LTM PTM **#12 : T deff** TRM, -TTM, **RIM, RRM, RTM**

YIM, YRM,

Eigen Mode Shape TypeBp

#13 : PTM #19 : LPen PTM Pendulum #14 :TPen **#20 : TPen** Pendulum Pendulum #21 : LPen #15 : LPen Pendulum Pendulum **#22 : YTM #16 : YTM** YIM, -IRM, YIM, -YRM, -YTM **YTM** #23 : PIM **#17 : YIR** -PIM, PRM YIR, #24 : VTM #18 : TPen -VIM, -VRM, Pendulum **VTM**

Eigen Mode Shape TypeBp

<u>#25 : RTM</u> -RRM, <u>RTM</u> <u>#26 : VRM</u> -VIM, VRM <u>#27 : RIM</u> -RIM, RRM **#28 : YTM** YIM, -YRM, -YTM **#29 : PIM** <u>PIM</u>, -PRM #30 : VTM -VIM, -VRM, <u>VTM</u>

Eigen Mode Shape **TypeBp with IP**

0.096Hz 0.172Hz 0.284Hz More More More 0.08Hz 0.08Hz More More **#1 #2** #3 #4 **#**5

Eigen Mode Shape TypeBp with IP

Eigen Mode Shape TypeBp with IP

Eigen Mode Shape

TypeBp with IP

Measurement

IM, TM (OSEM) Spectrum in iKAGRA with no control

Measurement

REF : TM (OSEM) Spectrum in 20 m

TM (OSEM) Spectrum in iKAGRA

One modification proposal for bKAGRA / TypeBp with IP modeling parameter :

Load on IP *M* [kg] Leg length *L* [m]

Resonant frequency *O* **P** [rad/s] Additional torsion stiffness *k*t

