KAGRA OMC suspension

2015.10.26 K.Somiya

Facts

- Same requirement for horizontal and vertical
- HAM-SUS table alone is not sufficient at f>~50Hz
- Stack+single/double suspension would work
- Low-mass spring would be better to reduce creep noise that can be a problem for OMC
- UWA people are ready to collaborate with us

OMC chamber (plan)

Beam line to the chamber top: 1200mm

Euler spring height: ~30cm Suspension frame height: 50~70cm Hopefully a single suspension works.

Stack system

TABLE I. Specifications of stack components.

	Metal block	Surface process	Size (mm)	Weight (kg)	Rubber block	Size (mm)	G (MPa)
First stage	SS	ECB	$300\phi \times 120$	64	Chloroprene	$28\phi \times 20$	4.2
Second stage	SS	ECB	$300\phi \times 120$	64	Chloroprene	$28\phi \times 20$	3.0
Third stage	SS	ECB	$300\phi \times 120$	67	Chloroprene	$28\phi \times 20$	1.9
(Breadboard)	Al	El	$800\phi imes 100$	134	-		

This will be ϕ 1500

Stack isolation ratio

Calculated isolation ratio of the new stach shows ~40dB isolation at 10Hz (ratio from blue to green).

Measured isolation ratio of the TAMA stach showed ~0dB isolation at 10Hz (-20dB at 50Hz) for horizontal.

Takahashi-san says the isolation ratio of the 1300mm stack would be x10 better than the one for TAMA at 10Hz (horizontal). The vertical would be a little worse than horizontal.

Requirement

Left (modelled isolation): a single-stage suspension of f₀=0.8Hz is ok. Right (measured): a double-stage suspension of f₀=0.8Hz is needed.