

DGS & AEL report for KAGRA domestic collaboration meeting

2015/10/8(Thrs)

Osamu Miyakawa

Objectives of digital control for KAGRA

- Real time control
 - Complicated multiple D.O.F.s
 - Low noise control
- 2. Data AcQuisition (DAQ) for gravitational waves
 - Controls signal = gravitational wave data
- Data monitoring system
 - Many environment channels
- 4. Interferometer tuning system
 - Reduction of commissioning time
- 5. Operation system
 - Stable observation

Development of control system for KAGRA

Specifications:

Input/ Output	 ADC: diff.32ch/card DAC: diff.16ch/card DIO: 16ch out, 64+64ch in,out/card 	• 16kHz sampling
Control	 Gentoo Linux + real time patch Max 15 of ADC/DAC cards on PCIe extension chassis connected by optical fiber cable Real time control by multiple PCs using Reflective memory network 	 Design and build on Matlab, Simlink Digital filter and composer (foton). Very low latency network by Reflective Memory
DAQ	 Low latency data transfer with 10MB/ sec amount Writing frame data Saving data to HDD 	 Low latency data transfer by Myrinet Data Concentrator, NDS, Frame Writer
Monitors	 Many signals: ~100000ch 	Signal database by EPICSChannel list produced automatically.
Tuning	Human interface by GUIApplications for control, tuning, diagnostic	GUI by MEDMDataviewer (Oscilloscope), DTT (FFT)
Operation	 Automatic interferometer control by scripts 	Epics control by command from shellGurdian

KAGRA DAQ/CTRL network design

Diagram of KAGRA controls system for Real Time Front-End

Diagram of KAGRA controls system

Other specifications

- NAT: Entrance of KAGRA control network
- Control of all KAGRA from an outside remote control room.
- Wireless LAN at center room in KAGRA mine
- Boot server: Booting RT PCs through network without HDD
- Network file system (NFS): Data area for users
- Server for building RT modules
- Double path for DAQ route for redundancy
- 20TB data storage in the mine and 200TB data storage at outside building
- Synchronizing all ADC/DAC to 1PPS signal from GPS antenna and synchronizing all RT PC and data concentrator to IRIG-B signal
- Redundancy for power failure using UPS
- IO chassis remotely connected to RT PC by optical fiber cable
- ADC/DAC, Binary switch on IO chassis
- Remote control for electronic circuits through binary switch (gain, offset, switch etc.)

Control signal network test for Real Time Front-end using ReFlective Memory technology

KAGRA IO chassis in Field rack

• Field racks are located in the laboratory area with a plastic cover to avoid humidity by heating of electronics

- inside temp. : $25^{\circ}30^{\circ}$ C (cf. out: 14° C)

inside humidity: 35~45% (cf.out: 70~90%)

A Field rack includes

- IO chassis with ADC/DAC
- AA/AI filter chassis
- whintieng filter chassis
- electronic circuit chassis, like coil drivers
- No Real time PCs ____
- No D€ power supplies

Control/DAQ network

How to synchronize ADC/DAC and PC

Wireless LAN @ Central area

- Covers all central area including 2nd floor.
- 6 PoE access points with no AC power in the laboratory area.
- Placed in a sealed plastic case.
- Connected to control network
- Supports roaming, so you can walk through in the central area during measurement

Network design

KAGRA Remote control room

- 1 large desk for discussion etc.
- 5 desks with 3 monitors each for control/analysis
- 7 large monitors for sensitivity etc.
- 3 middle monitors for detailed information.
- 7 small monitors for beam spots.

RT models, MEDM screens

Many models have been prepared for initial operation:
 PSL, MC servo, MC SUS, ASC, LSC, VIS

Manufactured electronic circuits for control

Manufactured electronic circuits for suspensions

DC power supply

DC Power distribution

- DC power supplies are located in the front room.
 - KEPCO ATE series: 50 of 36V, 30A, 15 of 25V, 10A
- DC power is distributed by long low loss cables to each field rack.
- D-SUB 3pin power strip is used to distribute power to each circuit.

circuits

Summary

- Installation of KAGRA control system in the mine completed!
- Preparation of remote control from the control room is done!
- Next task: connection to subsystems in the mine.