DGS & AEL report for KAGRA domestic collaboration meeting 2015/10/8(Thrs) Osamu Miyakawa # Objectives of digital control for KAGRA - Real time control - Complicated multiple D.O.F.s - Low noise control - 2. Data AcQuisition (DAQ) for gravitational waves - Controls signal = gravitational wave data - Data monitoring system - Many environment channels - 4. Interferometer tuning system - Reduction of commissioning time - 5. Operation system - Stable observation #### Development of control system for KAGRA # Specifications: | Input/
Output | ADC: diff.32ch/card DAC: diff.16ch/card DIO: 16ch out, 64+64ch in,out/card | • 16kHz sampling | |------------------|---|--| | Control | Gentoo Linux + real time patch Max 15 of ADC/DAC cards on PCIe extension chassis connected by optical fiber cable Real time control by multiple PCs using Reflective memory network | Design and build on Matlab, Simlink Digital filter and composer (foton). Very low latency network by Reflective
Memory | | DAQ | Low latency data transfer with 10MB/
sec amount Writing frame data Saving data to HDD | Low latency data transfer by Myrinet Data Concentrator, NDS, Frame Writer | | Monitors | Many signals: ~100000ch | Signal database by EPICSChannel list produced automatically. | | Tuning | Human interface by GUIApplications for control, tuning, diagnostic | GUI by MEDMDataviewer (Oscilloscope), DTT (FFT) | | Operation | Automatic interferometer control by scripts | Epics control by command from shellGurdian | # KAGRA DAQ/CTRL network design # Diagram of KAGRA controls system for Real Time Front-End #### Diagram of KAGRA controls system ### Other specifications - NAT: Entrance of KAGRA control network - Control of all KAGRA from an outside remote control room. - Wireless LAN at center room in KAGRA mine - Boot server: Booting RT PCs through network without HDD - Network file system (NFS): Data area for users - Server for building RT modules - Double path for DAQ route for redundancy - 20TB data storage in the mine and 200TB data storage at outside building - Synchronizing all ADC/DAC to 1PPS signal from GPS antenna and synchronizing all RT PC and data concentrator to IRIG-B signal - Redundancy for power failure using UPS - IO chassis remotely connected to RT PC by optical fiber cable - ADC/DAC, Binary switch on IO chassis - Remote control for electronic circuits through binary switch (gain, offset, switch etc.) # Control signal network test for Real Time Front-end using ReFlective Memory technology # KAGRA IO chassis in Field rack • Field racks are located in the laboratory area with a plastic cover to avoid humidity by heating of electronics - inside temp. : $25^{\circ}30^{\circ}$ C (cf. out: 14° C) inside humidity: 35~45% (cf.out: 70~90%) A Field rack includes - IO chassis with ADC/DAC - AA/AI filter chassis - whintieng filter chassis - electronic circuit chassis, like coil drivers - No Real time PCs ____ - No D€ power supplies # Control/DAQ network ### How to synchronize ADC/DAC and PC # Wireless LAN @ Central area - Covers all central area including 2nd floor. - 6 PoE access points with no AC power in the laboratory area. - Placed in a sealed plastic case. - Connected to control network - Supports roaming, so you can walk through in the central area during measurement # Network design # KAGRA Remote control room - 1 large desk for discussion etc. - 5 desks with 3 monitors each for control/analysis - 7 large monitors for sensitivity etc. - 3 middle monitors for detailed information. - 7 small monitors for beam spots. #### RT models, MEDM screens Many models have been prepared for initial operation: PSL, MC servo, MC SUS, ASC, LSC, VIS Manufactured electronic circuits for control # Manufactured electronic circuits for suspensions # DC power supply #### DC Power distribution - DC power supplies are located in the front room. - KEPCO ATE series: 50 of 36V, 30A, 15 of 25V, 10A - DC power is distributed by long low loss cables to each field rack. - D-SUB 3pin power strip is used to distribute power to each circuit. circuits #### Summary - Installation of KAGRA control system in the mine completed! - Preparation of remote control from the control room is done! - Next task: connection to subsystems in the mine.