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1. introduction

Scattering light in high-sensitive interferometers is an often discussed and well known issue
and one of the main limitations of the sensitivity of such instruments (References). The reason
for scattering is the interaction of light with surfaces having a random, isotropic structure in
the dimension of the wavelength of the light (References). Since the randomness of surface
structures relies on the nature of surface treatments (like polishing) or the randomness of envi-
ronmental conditions in a microscopical scale during the development of materials, scattering
in general can not be avoided.
A gravitational wave detector which is based on interferometry like KAGRA uses a lot of dif-
ferent optical elements (Aso, 2014). Especially mirrors are essential. Even smallest amounts of
stray light that are guided by a mirror back into the main laser beam can effect the final measure-
ment when their phase information carries a frequency distribution (Vinet et al., 1997). These
frequency distributions come from surfaces others than the mirror which can re-scatter the once
scattered light from the mirror. Rescattered light again can reach the mirrors and re-couple into



Fig. 1. Sketches of the PR/SR-mirrors (left) and the BS-mirror (right) with their respective
recoil mass (shown in grey surrounding the mirror).

the main laser beam carrying now the phase information mainly from those surfaces. Guide-
lines for the general calculation of re- or back-scattering light and its impact on the gravitational
wave strain are already existing in, for instance, Vinet et al. (1997); Flanagan and Thorne (2011)
and will not be given here. However, previous papers and works concentrated only on surfaces
lying relatively far away from mirrors used in gravitational wave detectors. In this paper, also
surfaces close to the mirrors, and seen under wide angles from the mirrors normal vector, will
be considered, in particular, the surfaces of the recoil masses which surround the mirrors in
KAGRA.
Recoil masses are used to hold the mirrors and include electrical magnets corresponding to
magnets attached on back-surface of the mirror to correct its respective position. In Figs. 1 and
1, the basic sketches of two main types of mirrors for KAGRA are presented: the power- and
signal-recycling mirrors (PR) and the beam-splitter (BS) mirror.

2. Theoretical Approach

2.1. Scattering on a Mirror

The surface scattering (as well as specular reflection) on an area dAs is in a very general way
described in terms of the bidirectional-reflection-distribution-function (BRDF) as

BRDF =
∂Ls(θi,φi;θs,φs)

∂Ei(θi,φi)
. (1)

Here, Ls is the radiance of reflected/scattered light and Ei the irradiance of the incoming light
with power Pi, respectively; θi/φi and θs/φs are the incident and scattered latitude/longitude in
spherical coordinates as shown in Fig. 2.1. Both radiance and irradiance depend on the specific
location of the scattering event on the surface and are defined as

Ls =
∂Ps

∂As · cosθs ·∂Ωs
, Ei =

∂Pi

∂As
, (2)

where Pi and Ps are the power of the incident and the scattered light, respectively. The term
∂As · cosθs is the effective radiating area an observer would see under the scattering angle θs.
It is important to note that due to the relations

dΩs = dAc cosθc · r−2 dΩc = dAs cosθs · r−2, (3)



Fig. 2. Sketch of a scattering event with the principal denominations that are used in this
paper. φi is set to be 0 without limiting generality.

of a source (s) and a collector (c) having a distance r to each other, Ls in Eq. (2) can be expressed
also in terms of the power received by the collector1 (Krywonos, 2000).

If now a laser hits the surface of a mirror, a small portion of the light will be scattered due to
the mirrors surface properties (for high-quality mirrors, the ratio of the total integrated power
of scattered light (T IS) to the power of the incident light (Pl) is usually of the order of 10−4 –
10−5). The angular distribution of scattered light depends of course on the individual surface
structure of the mirror and thus is hard to describe in general. However, it is possible to model
those structures, and thus the scattering, with the aid of the surface power spectral density
(PSD). The PSD can be calculated by taking the Fourier-transformation of the profile of a
given surface [some citations might be good here; or even an example of a surface map?].
Examples for scattering models are the theories of Rayleigh-Rice, Beckmann-Kirchhoff, or
(generalized) Harvey-Shack which all give an estimation of the amount of scattered light in
dependence of the incident angle of a given light-field under different constraints (Harvey et al.,
2012; Krywonos, 2000). In case of mirrors with smooth surfaces and small roughness, the
Rayleigh-Rice theory is usually applied. However, as especially toward large scattering angle,
Rayleigh-Rice (RR) shows significant difference to measurements, generalized Harvey-Shack
(GHS) theory has been applied for defining the mirror scattering. GHS has been shown to be
more consistent with real scattering measurements than RR (Krywonos, 2000). In a simple
representation, we can write for the mirrors BRDF :

BRDFm(θi;θs,φs) =
16π2

λ 4 (cosθi
2 + cosθs

2) ·Q ·PSD( fx, fy)

=
∂Ls(θi;θs,φs)

∂El(θi)
,

(4)

1Ωs is the solid angle toward the detector surface and vice versa is Ωc the solid angle from the detector toward the
surface of the source.



as given in Krywonos (2000). Here, θs and φs are the latitude and the longitude of the scattering
when light of the wavelenght λ hits the mirror under the latitude θi. Q is the polarization
dependent reflectance of the surface for the incident angle θi. The two spatial frequencies fx
and fy can be expressed in terms of θi, θs, and φs:

fx =
sinθs cosφs− sinθi

λ
fy =

sinθs sinφs

λ
. (5)

Note: with the GHS and the RR theory one is able to describe the angular distribution of scat-
tering but not the specular reflection itself. Also, because of the very small angular distribution
of the laser light hitting the mirror (and the usually constant power), it is reasonable to write
BRDFm = Ls/El istead of the full derivation in Eq. (4).
The PSD is generally two-dimensional. However, as most of the mirror surfaces are isotropic,
a one-dimensional PSD is usually used for comparisons2. It is possible to reconstruct the two-
dimensional form with the aid of a fitting model, called K-correllation or ABC-model (Harvey
et al., 2012). I will refer to it in a kind of modified version as:

PSD1−D =
A

(1+(B f )2)C/2 . (6)

Taking these parameters, the two-dimensional PSD can be calculated via

PSD2−D = K · AB
(1+(B f )2)(C+1)/2

K =
1

2
√

π
· Γ((C+1)/2)

Γ(C/2)
,

(7)

where we assume rotational symmetry so that f =
√

f 2
x + f 2

y . The parameters A, B, and C are
variable and depend on the individual surface structure. A has the dimension of PSD1−D which
is usually given in nm2mm, while B can be interpreted as the correlation length of the surface
irregularities and will be given here in mm. C has no unit and gives a measure for the slope of
the PSD. Since the mirror surfaces that are a topic of this paper can be assumed to be isotropic
[include description of mirrors material], the assumption of such simple symmetric PSD is
reasonable. However, due to the facts that neither a surface is infinitely expanded nor a measure-
ment of its surface structure can show very small irregularitiies, a measured PSD, as shown in
Fig. 2.1, is always limited at both small and large spatial frequencies. Thus, predictions on the
BRDF are generally also limited to certain angular distributions around the scattering event
(usually for very small and very large latitudes the BRDF can not be given). On the other side,
even the K-correlation model sometimes fails to give the exact curve of a measured PSD due
to additional structures or misalignments of the PSD curve. In such cases, it is useful to rep-
resent the measurement by a superposition of two or more K-correllation models. However,
doing so, the respective BRDF should be calculated only within the given limits of the spatial
frequency in order to avoid a non physical behavior as those structures or misalignments pro-
duce fits which are not reliable outside the mesured frequency range. In Fig. 2.1 a comparison
of the measured one-dimensional PSD (black line) of the beam splitter of KAGRA with fits
according to the ABC-model are shown. The blue line represents the sum of two independent
ABC-models (red dotted and dash-dotted line, respectively) which fit the respective slopes to-
ward higher and lower frequencies (the respective values for the parameters are given in the
plot). As one fit alone would fail to give a stable representation of the PSD, the two fits together
mimic the measurement in the given frequency range quite well.

2The one-dimensional PSD is just the average of the two-dimensional one along one of the axis.
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Fig. 3. Left: Comparison of the one-dimensional PSD of the mirrors which are investigated
in this paper. Right: Fit on the measured one-dimensional PSD of the beam splitter of
KAGRA achieved by using two independent ABC-models. Shown is the whole measured
frequency range

This kind of fit was done for all mirrors for which surface-maps, and thus PSDs, were available,
namely: PR3, PR2, SR3, SR2, and BS. For the missing PRM and SRM mirrors, we assume a
similar PSD as for the PR2 and SR2 mirror, respectively, because of their comparable proper-
ties/requirements (see Tab. 4.1). The respective results are shown in Tab. 2.1 for the limitations
of the given PSD1−D. However, due to the fact that we need BRDF distributions of scattered
light also for latitudes up to 90◦, we are forced to neglect the above mentioned limitation of
the fits toward higher frequencies. This has to be done in any case at some point because of the
limited resolution of all surface-map measurements.

Table 1. Table of the ABC parameters of the fits on all PSD1−D curves that were available
at the time this paper has been written. Data for the PRM mirrors were not available.

mirror A1 B1 C1 A2 B2 C2
(nm2mm) (mm) ( - ) (nm2mm) (mm) ( - )

BS 1·104 115.77 3.08 4.3 23.89 2.16
PR3 4.6 99.46 1.91 0.29 2.03 10.17
PR2 7·10−7 158.71 7.49 2 17.11 2.81
SR3 8.64·10−2 158.83 3.59 5.98 33.79 2.35
SR2 7.69 158.79 1.88 0.9 3.17 8.79

2.2. Scattering on Recoil Masses and Re-coupling

We will now turn to the particular purpose of this paper which is examining the scattering on the
recoil masses of the mirrors and its influence on the strain noise measured in the interferometer.
Considering a laser that hits a mirror having a certain PSD, that particular mirror will produce
scattered light during the reflection of the laser beam. If a part of this scattered power Ps is
hitting the recoil mass, The again scattered light Pss from the recoil mass may reach the area
where the laser hits the mirror. In order to estimate that part of light, we can again apply the
BRDF as given in Eq. (1):

dLss = BRDFr ·dEs = BRDFr ·Ls cosθrdΩr. (8)



Fig. 4. Simplified sketch of the principal setup that was used for the calculations and the
denomination.

Here, we used the double differential expression of the radiance and its relationship to the
irradiance as given in Eqs. (2) and (3). Note that Ls is now the radiance coming from the area
where the laser hits the mirror toward the recoil mass while dΩr is the solid angle of the recoil
mass receiving Ls and θr is latitude of the incoming light seen from the recoil mass. Here, for
simplicity, we just give the general expressions without the specific dependencies like in the
equations above.
In the same way we can now formulate the power of the re-coupled light Psss back into the laser:

Lsss =
∂ 2Psss

∂Am cosθl∂Ωl
=
∫

Ωs

BRDFm ·Lss cosθsdΩs. (9)

In this expression, the index (l) marks the angles toward the waist of the laser beam while (s)
is the direction from which the mirror receives the back-scattered light. This is similar to the
scattering angles as used in the general expression in Eq. (4) where also BRDFm is defined.
From Eqs. (2) and (3) we can rewrite Eq. (9) into

Lsss =
∫

Ωs

BRDFm ·
∂ 2Pss

∂Am∂Ωs
dΩs. (10)

For θl very close to zero (as for the PR and SR mirrors), Lsss can basically be calculated without
the cosine-term.

2.3. Calculation of hrec( f )

The frequency dependent gravitational strain h( f ) of the laser-light (with the wavelength λ =
1.064 µm) in the cavities is what is going to be measured in a gravitational wave detector. A
noisy phase shift which is carried by the stray-light from the recoil mass and is re-coupled into
the main beam is disturbing this signal. This phase noise comes from motions of the recoil
mass relative to the mirror, mainly caused by seismic motions, and can be described in terms



of h( f ). Thus, we start with a somewhat general function of calculating the influence of re-
coupled backscattered light on h( f ) after Flanagan and Thorne (2011). Defining hrec( f ) as the
influence of the stray-light of the recoil mass on h( f ) (light-scattering noise), it is

δhrec( f )2 =
λ 4

8π2L2
armPmb

∫
Ωs

dΩs
∂ 2Pss

∂Am∂Ωs

∂ρ

∂Ωl
Φ( f )2. (11)

Larm is the length of the arms of the interferometer (3km for KAGRA). The term ∂ρ/∂Ωl
describes the scattering probability density of the mirror toward the laser and is basically equal
to BRDFm ·cosθl . Thus, it depends strongly on the angle of incidence of the backscattered light.
Note, the reason to write δhrec instead of hrec is that there is still a derivation after Ωl toward
the waist of the beam which can be solved by multiplying δhrec with Ωl as Ωl is a constant.
Together with Eq. (10), we can write

δhrec( f )2 =
λ 4

8π2L2
armPmb

∫
dLsssΦ( f )2. (12)

Φ( f )2 is the spectral density of the scattered light phase fluctuations at a frequency f . These
fluctuations are connected to the seismic noise ξ ( f ) of the ground that is led to the recoil mass
via the respective suspension and is (in the worst case) causing a relative motion between mirror
and recoil mass ξ̂ ( f ). This term is determined by the specific transfer function, T F , of the
suspension in horizontal and vertical direction. In frequency-space, ξ̂ can be easily calculated
by multiplying T F with ξ ( f ) (Flanagan and Thorne, 2011) [I should search for real published
references..., e.g. Soulson]. Thus, the spectral density of the scattered lights phase fluctuations
would become Φ( f ) = 4π/λ · ξ̂ ( f ). However, due to the fact that only the sine of the time-
dependent phase distortions of scattered light count exactly for calculating the influence on
the measured gravitational wave strain [a reference would be good], we have to calculate the
“upconverted” noise spectrum to achieve the exact values. Basically, there are two possibilities
of doing an upconversion. One is using the time dependent data of seismic noise itself and
calculating the spectrum of sin ξ̂ (t). The other one is by using the noise spectrum and convert it
by using the method of Flanagan and Thorne (2011)3. In Fig. 2.3 and 2.3 the spectrum of ξ ( f )
as measured in the Kamioka mine where KAGRA is currently built is shown together with the
transfered noise spectra of PR and SR mirrors and their respective upconversions.

3. Simulating Back-Scattered Light

3.1. BRDF of Recoil Mass

The above made theoretical derivation is a very general way of calculating re-coupled scattered
light. The close location of the recoil mass, however, makes it very difficult (not to say im-
possible) to solve above equations analytically. Thus, we calculated the resulting power of the
backscattered light with a numerical analysis tool for optical processes, called “LightTools”.
“LightTools” uses Monte-Carlo simulation procedures to calculate probable optical paths of
a huge number of virtual optical rays4. For interactions with surfaces, the specific properties
of the surface are taken to create a probability distribution and to calculate the possible ways.
While the light source creates an equal distributed set of rays, each ray carries a different power
according to a given angular or spatial distribution of the emitted power.

3This method is relatively simple and useful but has limitations, especially when the original noise spectrum reaches
values & 100 ·4π/λ .

4Depending on the complexity of the problem, simulations with approximately 2 – 20 million rays have been
performed on a Dell precision T1700 PC.
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Fig. 5. Spectral density of the seismic noise of the Kamioka mine (black) and its transfered
parts to the PR, SR, and BS mirrors via the respective suspensions. The horizontal part of
the transfered noise is drawn in the left figure; the vertical part is drawn in the right figure.
Additionally, the upconverted spectra of the transfered noise is also shown.

Depending on the mirror, the light source was set to be either the scattered light itself which
comes directly from the mirror surface (as for all power-recycling and signal-recycling mirrors)
or was set to simulate the laser beam before it hits the mirror (as for the beam splitter). For the
first case, in order to increase the precision of the measurements, the rays were created only
within the scattering angle of θ = 5π/18...π/2, where a non-zero probability of hitting the
recoil mass exists. In any case, the light source was set to be a circular surface with a diameter
depending on the mirror that was subjected with a spatial power distribution according to a
Gaussian beam with σ being the beam size as given in Table 4.1. For the PR and the SR mirrors,
the angular power distribution was set according to the BRDF of the mirror as given in Eqs. (4)
while the incident angle was set to be zero. In case of the BS (and indirectly also for the recoil
mass), the properties of the surface have been changed to behave like a scatterer according to
the calculations (or measurements, respectively).
The recoil masses that will be used for KAGRA are made of Titanium (roughly polished) for
which the BRDF had to be measured in order to use the data in “LightTools” and to perform a
realistic simulation. Calculated scattering values based on the surface-PSD could not be used in
this case as the roughness of our Titanium surface is too high to perform realistic Rayleigh-Rice
or Harvey-Shack calculations. A sample of such Titanium used for the measurements can be
seen in Fig. 3.1). From these pictures, the rough surface can clearly be seen, especially in the
measured BRDF that shows a quite noisy structure due to the surface properties. To calculate the
BRDF we used two different scatterometers: a scatter-goniometer and a back-scatterometer5.
Basically, for both, scattering light is produced by a 1 µm near infrared laser (a laser of the
same wavelength will be used in KAGRA) hitting a sample with 10 ∼ 20 mW. For the scatter-
goniometer, the distribution of scattered light is measured by a photodiode (PD) which rotates
in the plain of incident laser and specular reflection along the latitude around the scattering
point on the samples surface. For the back-scatterometer, the scattering back to the incident
laser beam is measured by using a beam-splitter to decouple the back-scattered light toward the
PD6. The scattered light is measured in dependence of the angle of incidence (AOI) of the laser
beam. From the measured photocurrent (IPC) of the PD and its known relation to the received

5The particular setup of both scatterometers will be described in a later paper.
6The usage of a back-scatterometer is necessary as the goniometer naturally blocks the incident laser beam for

latitudes where back-scattering appears.
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Fig. 6. Photograph of the titanium plate (left) and its scatter-profile for a 1.064 µm laser
(right). The profile is a merge of scattering and back-scattering measurements.

power (nPD) we can calculate the respective BRDF by using Eqs. (1) and (2):

BRDFbsc =
4IPD ·nPD

Pl ·ΩPD cos(AOI)

BRDFsc =
IPD ·nPD

Pl ·ΩPD cos(AOI)
.

(13)

The marks bsc and sc stand for back-scattering and (regular) scattering, respectively, while ΩPD
is the solid angle from the point of the scattering event on the sample surface toward the area of
the PD (∼ 3 mm2) which has a distance to the scattering point of 530 and 50 mm, respectively.
The factor of 4 in the upper equation is given to the fact that for back-scattering we used a 50%
beam-splitter for the measurement.

3.2. Analyzing Simulation Results

As a result of the simulations, a mesh of the back-scattered power Pss per solid angle and surface
area is created in dependence of latitude θ and longitude φ which are defined as discrete values.
An example of such a mesh can be seen in Fig. 3.2, the result of the simulation for the PR3
mirror with the recoil mass being a Lambertian scatterer (100% reflectivity).
∆Pss/(∆Am∆Ωs) shall be now abreviated as ∆I. After Eq. 11, the expected influence on the
gravitational-wave strain can thus be determined to

δhrec( f )2 =
2λ 2

L2
armPmb

· ξ̂ ( f )2 ·∑
i, j

∆Ii, j ·∆(Ωs)i, j ·∆pi, j. (14)

∆pi, j represents the probability density ∆ρi, j/∂Ωl of light scattered toward the waist of the
laser. The sum is to be taken over all entries i and j of the corresponding mesh, related to the θi
and φ j as seen from the mirror (refers to θs and φs in Fig. 2.2). ∆(Ωs) is the corresponding solid
angle mesh of the mirror. According to these equation, the intensity of the re-coupled light can
be described as

Irec = ∑
i, j

∆Ii, j ·∆(Ωs)i, j ·∆pi, j. (15)

4. Calculation of hrec( f )

4.1. Mirror Parameter

In the upper section, it is described how the power of the stray-light re-coupling into the main
beam and the strain of the interferometer is calculated in general. Now, we have to go further
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and start to distinguish the power coming from different mirrors of the interferometer. The recoil
masses are applied to 7 mirrors in the KAGRA interferometer. 3 for the power recycling, 3 for
the signal recycling and one for the beam splitter. Since each mirror, assuming a Gaussian beam
profile, provides different laser beam waist parameters (radius and distance to the mirror) in
two directions, we have to deal with 12 different7 “q”-parameters of the mirrors (q is a complex
parameter that gives information on the location and the size of the waist of a Gaussian beam).
From the q-parameters one is able to calculate ∆Ωl via

∆Ωl =
πw2

o

R(z)2 =
λq2[

q1

(
1+ q2

2
q2

1

)]2 ,

q = q1 + iq2,

(16)

where wo and R(z) are the beams waist and its distance to the mirror, respectively. In Tab. 4.1
the mirrors together with their respective parameter as well as the power of the main beam seen
from each mirror, ∆Ωl , and the calculated intensity of the re-coupled light according to Eq. (15)
are listed.

4.2. Results for the PR and SR Mirrors

4.2.1. Lambertian Scatterer

As mentioned above, we distinguished two different cases. First, assuming the recoil-mass to
be made of a Lambertian scatterer (“perfect” white surface) and second the case of titanium.

7An exception to this constrain are the PRM and SRM mirrors where only one direction is given.



Table 2. List of the mirrors, their q-parameters, the related power of the main beam Pmb,
and the calculated results of the intensity of the stray light that is recoupled into the main
beam. BS is the beam splitter, PR stands for power recycling and SR for signal recycling.
The reason for the double entries of the BS, PR2, PR3, SR2, and, SR3 mirrors is they are
reflective in basically two directions with non-zero incident angles (45°for BS; <1°for the
other mirrors).

mirror beam size q1 q2 ∆Ωl Pmb
(mm) (m) (m) (sr) (W )

BS 36.1703 -1023.5 293.48 2.5·10−10 250
BS 36.0616 1020.17 293.48 2.6·10−10 250
PR3 36.6854 12.5989 0.0399461 2.7·10−10 515
PR3 36.6854 1039.26 293.48 2.5·10−10 515
PR2 4.46478 6.44215 58.1447 2.2·10−10 515
PR2 4.46478 -1.53283 0.0399461 1.8·10−8 515
PRM 4.48282 8.31934 58.1447 3.6·10−10 515
SR3 36.6846 12.5989 0.0399479 2.7·10−10 0.107
SR3 36.6846 1039.24 293.48 2.5·10−10 0.107
SR2 4.33243 7.10525 54.4941 3.2·10−10 0.107
SR2 4.33243 -1.48739 0.0399479 1.9·10−8 0.107
SRM 4.33803 7.63598 54.4941 3.7·10−10 0.107

The first case is mainly made for comparability reasons while the second case is of real inter-
est of application. In Fig. 4.2.2 the results of the simulations for the first case are summarized
and δhrec is shown together with KAGRAs goal sensitivity curve (black, dotted line). For all
mirrors, the results are differentiated by the horizontal and vertical vibration of their respec-
tive recoil mass. However, both kinds of vibration will influence the strain noise according to
Eq. (12). Therefore, the overall noise effect can be seen as a superposition of both types of vi-
bration. Note that the sensitivity itself is given in Hz−1/2 while δhrec is given in Hz−1/2sr−1 as
∆Ωl still would have to be multiplied to get the spectral density of the gravitational wave strain
noise created by the recoil mass scattering.
For all PR and SR mirrors, we find δhrec to be below 10−24 Hz−1/2sr−1 at 1 Hz and
10−27 Hz−1/2sr−1 at 10 Hz. Compared to the sensitivity of KAGRA and taking into account
that we still have to multiply ∆Ωl for getting the strain-noise spectral density, this is a neglible
effect. Anyway it is worth to note that of all mirrors, the recoil mass of PR3 shows the biggest
effect regarding the scattering noise. At 1 Hz we reach a maximum of 5.5×10−25 Hz−1/2sr−1

with upconverted vertical seismic noise, while, e.g., PR2 reaches only 2×10−28 Hz−1/2sr−1 and
SR3 5×10−26 Hz−1/2sr−1. This trend can be seen for all frequencies: at 10 Hz we find a maxi-
mum for PR3 at 1×10−27 Hz−1/2sr−1 (now from the upconverted horizontal seismic vibration),
while PR2 gives 3.2×10−31 Hz−1/2sr−1 and SR3 only 2.6×10−34 Hz−1/2sr−1.

4.2.2. Titanium

The results for the case of a recoil mass made of titanium are presented in Fig. 4.2.2. Basically,
the curves follow all the trends which have been discussed for the case of a lambertian scatterer.
The only difference is that for titanium, all values are now reduced by a factor of≈3.3 (the exact
values for Irec as given in Eq. (15) are listed in Table 4.3.1). That means, however, that also for
this case, the scattering from the recoil mass won’t affect the sensitivity of KAGRA.
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Fig. 8. Calculated strain noise (per steradiant) for the PR and SR mirrors for the theoret-
ical case of having a recoil mass made of lambertian scatterer with 100% reflectivity in
comparison with the goal sensitivity of KAGRA. Shown are the results for the vertical and
horizontal movements of the mirror, together with their respective upconversion.

4.3. Results for the Beam Splitter

4.3.1. Lambertian Scatterer

In the same way as for the PR and SR mirrors, we first analyzed the case of having a recoil mass
made of a Lambertian scatterer. The results of these calculations can be seen in the diagrams
of Fig. 4.3.1. Alike the PR and SR mirrors, also the backside of the BS is important as the
incoming beam and one beam of the arms of KAGRA hit the BS on its backside. The results
for the frontside are given in the left diagram, those for the backside in the right diagram of
Fig. 4.3.1. The reason why we are distinguishing these two sides is that the recoil mass on the
backside of all mirrors has a different shape as it contains the EM-actuators which are needed
for the mirror control (We just define the “backside” of the here discussed mirrors as the side
with the actuators). Thus, the recoil mass is much bigger and we expect an actual effect on the
scattering. For the alignment of the BS mirror in the interferometer, it means that the frontside
is faced toward one of the 3 km arms and the SR level of KAGRA while the backside is faced to
the PR level and the other arm of the interferometer (Aso, 2014). The values of ∆Ωl for BS (first
and second entry), as given in Table 4.1, refer to the front- and to the backside, respectively.
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Fig. 9. Calculated strain noise (per steradiant) for the PR and SR mirrors for the case of
having a recoil mass made of roughly polished Titanium in comparison with the goal sen-
sitivity of KAGRA. Shown are the results for the vertical and horizontal movements of the
mirror, together with their respective upconversion.

For all cases that are threated in this paper, the noise above 0.3 Hz is dominated by the vertical
upconverted vibration while for smaller frequencies the difference between horizontal and ver-
tical (upconverted) vibration is vanishing. In case of lambertian scatterer on the frontside, the
maximum noise at 1 Hz is about 3×10−25 Hz−1/2sr−1. Until 10 Hz it continiously decreases
down to 1.2×10−32 Hz−1/2sr−1. Again, the curves have to be multiplied with ∆Ωl as given
in Table 4.1 to be comparable with the given sensitivity curve of KAGRA, which is in units
Hz−1/2. On the backside, the maximum at 1 Hz is about 1.3×10−24 Hz−1/2sr−1, and at 10 Hz
5×10−32 Hz−1/2sr−1. Thus, by a factor 5 bigger than for the frontside.

Table 3. Values for Irec in
( W

m2sr1

)
as determined after Eq. (15) from the results of the sim-

ulations. The values are given for the two cases of having a Lambertian and a titanium
scatterer, respectively.

Irec BS front BS back PR3 PR2 SR3 SR2

Lambertian 2.94·10−17 8.13·10−16 4.04·10−18 4.16·10−25 1.19·10−23 1.63·10−23

Titanium 3.42·10−17 2.34·10−16 3.32·10−19 6.13·10−26 9.32·10−25 2.61·10−24
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Fig. 10. The calculated spectral density of the strain noise (per steradiant) for the BS mirror
having a recoil mass made of a lambertian scatterer. The data are compared with KAGRAs
goal sensitivity.
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Fig. 11. The calculated spectral density of the strain noise (per steradiant) for the BS mir-
ror having a recoil mass made of titanium. The data are compared with KAGRAs goal
sensitivity.

4.3.2. Titanium

In Fig. 4.3.2, in the right diagram, the results of the calculations using the data of roughly
polished titanium for the recoil mass are given. As can be seen from the pictures as well as
from Table 4.1,

5. Discussion
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