Characterization of the payload of the Type B suspension system for KAGRA according to the prototype experiments at TAMA300

NAOJ, ICRR^A, ERI^B, Univ. Sannio^C, INFN Rome^D, NIKHEF^E

 Fabián Erasmo Peña Arellano, Ryutaro Takahashi, Mark Barton, Naoatsu Hirata, Yoshinori Fujii, Ayaka Shoda, Hideharu Ishizaki, Naoko Ohishi, Kazuhiro Yamamoto^A, Takashi Uchiyama^A,
 Takanori Sekiguchi^A, Tomotada Akutsu, Yoichi Aso, Osamu Miyakawa^A, Masahiro Kamiizumi^A,
 Akiteru Takamori^B, Riccardo DeSalvo^C, Ettore Majorana^D, Eric Hennes^E, Jo van den Brand^E,
 Alessandro Bertolini^E, Kazuhiro Agatsuma^E, J. van Heijningen^E, KAGRA collaboration.

Outline

- Description of the payload.
- Description of the OSEM.
- Damping the resonances of the suspension.
- Alignment range.
- Pictures of the assembly.
- Mechanical changes to the payload design.
- Conclusion

The payload prototype (1)

- Test mass
- Recoil mass
- Intermediate mass (marionette)
- Intermediate recoil mass
- 10 OSEMs

Test mass: 200 µm steel wire.

KAGRA

Observatoru of Japar

Recoil mass: 600 µm tungsten wire.

The payload prototype (2)

- Test mass
- Recoil mass
- Intermediate mass (marionette)
- Intermediate recoil mass
- 10 OSEMs

Test mass: 200 µm steel wire.

Recoil mass: 600 µm tungsten wire.

filter (BF)

Intermediate mass (inside IRM)

Dummy mirror (inside RM)

The payload prototype (3)

- Test mass
- Recoil mass
- Intermediate mass (marionette)
- Intermediate recoil mass
- 10 OSEMs

Test mass: 200 μm steel wire.

Recoil mass: 600 µm tungsten wire.

Intermediate mass (1)

It was calculated that this system provides roll and pitch adjustment of approximately ±2.5 degrees.

OSEM (1)

- OSEM: Optical sensor and electromagnetic actuator.
- shadow sensor.
- Coil-magnet actuator.

OSEM (2)

- OSEM: Optical sensor and electromagnetic actuator.
- shadow sensor.
- Coil-magnet actuator.

OSEM calibration

Measurement range (linear regime along Y): **1 mm**. Alignment tolerance (along X): **± 400 \mum** for a **±5%** error.

OSEM sensitivity

Damping the suspension resonances (1)

We used the traditional method:

- 1. The modes were excited separately using the OSEMs.
- 2. An exponentially damped sinusoidal function was fitted to the ringdown.
- 3. The quality factor was calculated as $Q = \pi f_0 \tau$.

Damping the suspension resonances (2)

- The residual oscillation may be seismic motion not filtered by the chain.
- However, that requires other
 frequencies to be present in the
 residual movement because the
 resonant peak becomes wider.
- More investigation is needed.

Damping the suspension resonances (3)

Alignment range

DOF	Minimum (mrad)	$\begin{array}{c} {\rm Maximum} \\ ({\rm mrad}) \end{array}$
Roll	-4.7	5.9
Pitch	-5.0	5.0
Yaw	-1.8	3.5

Assembly of the payload

Changes in the payload

Conclusions and future work

- The payload prototype was assembled and tested at NAOJ.
- Values of quality factors were given with the active control on:
 - We require to increase the stiffness of the damper suspension (mode #22).
 - The filter has to be checked (modes #4 and #6).
- Alignment range of the payload was given.
- The mechanical design was changed in order to ease the assembly.
- Installation work at Kamioka will begin soon.

