Measurements on the Scattering of Materials Used in the Gravitational Wave Interferometer Detector KAGRA

– Performing Stray-Light Control –

<u>Simon ZEIDLER</u>, Tomotada AKUTSU, Yasuo TORII, Yoichi ASO, Raffaele FLAMINIO, and Kazuhiro YAMAMOTO^a

NAOJ, ICRR Univ. of Tokyo^a

NAOJ, Gravitational Wave Project Office

JPS conference, Osaka

Outline

Introduction

- Principal Setup of the Interferometer
- The Importance of Stray-Light Control
- Where Scattering may appear

Measuring the Scattering

- Characterization of Scattering
- Setup of a Scatterometer
- Titanium and SiC
- Backscattering Measurements
- Titanium, SiC, and Black Coatings

Summary

Introduction

Principle Setup of the KAGRA Interferometer

Schematic of the main interferometer and the naming convention of IFO parameters (from "KAGRA Main Interferometer Design Document" by Y. Aso)

The Importance of Stray-Light Control

The Importance of Stray-Light Control

- KAGRA measures GW strain through phase differences
- Scattered light and ghost beams may carry phase differences other than GWs
 - Effect of scattered light on gravitational wave strain:

$$h_{rec} = \frac{\sqrt{2} \cdot \lambda}{L} \cdot \xi(f) \cdot \sqrt{\frac{I_{rec}}{P_{laser}}}$$

 $I_{rec} \rightarrow Intensity of recoupled light [W/m²]$ $P_{laser} \rightarrow Power of laser beam[W]$ $\xi(f) \rightarrow vibration noise spectrum [m/\sqrt{Hz}]$

The Importance of Stray-Light Control

Ghost Beams

- KAGRA measures GW strain through phase differences
- Scattered light and ghost beams may carry phase differences other than GWs
 - Effect of scattered light on gravitational wave strain:

 $I_{rec} \rightarrow Intensity of recoupled light [W/m²]$ $P_{laser} \rightarrow Power of laser beam[W]$ $\xi(f) \rightarrow vibration noise spectrum [m/\sqrt{Hz}]$

 $h_{rec} = \frac{\sqrt{2 \cdot \lambda}}{I} \cdot \xi(f) \cdot \sqrt{\frac{I_{rec}}{D}}$

Where Scattering may Appear

- Basically, all surfaces produce scattering
- To find its impact on KAGRA, we need to know the characteristics of used materials

Measuring the Scattering

Characterization of Scattering

- Scattering appears due to inhomogeneities of materials
- Surfaces (in reflection or transmission), inertial scattering (Rayleigh scattering), Compton scattering
- How to characterize scattering?

Measuring the Scattering

Characterization of Scattering

- Scattering appears due to inhomogeneities of materials
- Surfaces (in reflection or transmission), inertial scattering (Rayleigh scattering), Compton scattering
- How to characterize scattering?

BRDF (Bidirectional Reflection Distribution Function)

Titanium (cut, unpolished)

JPS conference, Osaka

Titanium (cut, unpolished)

JPS conference, Osaka

Titanium (cut, unpolished)

JPS conference, Osaka

SiC (polished)

Backscattering Measurements (Back-Scatterometer)

Measuring of what comes directly back!

 $BRDF(\theta) = \frac{2 \cdot I_{PD}(\theta) \cdot f_{PD}}{P_{laser} \cdot \Omega \cdot \cos(\theta)}$

JPS conference, Osaka

Backscattering of Titanium and SiC

Backscattering of (Black) Coatings

"SolBlack" on Aluminum

"Spectral Black"

"Metal Velvet"

"VantaBlack" (blackest material on earth)

- Coating materials and candidates for baffles and sensitive parts of KAGRA
- Need to have very low backscattering

Summary

- Developed devices for measuring the scattering properties of any material (surface)
- Scattering + Backscattering
- Materials analyzed: Titanium, SiC, "SolBlack", "Spectral Black", "Metal Velvet", "VantaBlack"
 - Should suppress scattering
 - Information are applied in simulations regarding scattering of structures like baffles and its impact on KAGRAs sensitivity
- Ongoing improvement of devices
- Ongoing research and data gathering

Thank you for your attention!

Outlook

- SolBlack is magnetic!
 - \rightarrow testing the influence on other (magnetic) components
- Simulations for the "Doughnut-Baffle" in front of the cryoduct shield
 - \rightarrow Do we need a beam dumper?
 - \rightarrow Which material?
- Simulations for the other mirrors/optical components which which are surrounded by recoil masses
- Development and design of BRT

The KAGRA Project

- 3 km long Gravitational-Wave-Detector in the Kamioka mine
- First cryogenic, underground interferometer detector
 - Reduction of thermal and seismic noise

Sensitivity of KAGRA

- Able to detect Gravitational Waves from Neutron Star Binaries up to 150Mpc distance
- Comparable to Advanced LIGO in the USA

Backscattering Measurements

Semi-automatized rotating sample holder

$$\begin{split} &I_{PD} \Rightarrow photocurrent \\ &f_{PD} \Rightarrow linear factor of power/current ratio(1.264 W/A) \\ &P_{laser} \Rightarrow Power of the laser hitting the sample \\ &\Omega \Rightarrow solid angle of scattered light reaching the PD \\ &\theta \Rightarrow incident angle of the laser hitting the sample \end{split}$$