27pSK10 **重力波を用いた重力理論の検証**

に向けたデータ解析パイプライン

成川達也

田越秀行,上野昂,譲原浩貴,大原謙一,Hyung Won Lee,Chunglee Kim, Jeongcho Kim,有馬司,枝和成,藤井善範,端山和大,平沼悠太,廣林茂樹,伊藤洋介, 神田展行,金山雅人,間野修平,三宅恭平,宮本晃伸,中西雄大,中野将也,中尾隼人, 大石奈緒子,酒井一樹,佐々木幸次,正田亜八香,諏訪部宙,高橋弘毅,田中一幸, 植木聡史,若松剛司,山本尚弘,横山順一,横澤孝章

日本物理学会 2015年秋季大会 大阪市立大学, 16:00-16:15 (10+5分), 9月27日

Strategy

Parametrized post-Einsteinian Framework Approximate Bayesian analysis Detectable regions of ppE corrections to GR

Summary

We demonstrate that adv. GW detectors, including KAGRA, have tremendous potential for new bounds on deviations from GR.

Why considering Alternative Theories of Gravity?

- GR passes all tests with flying colors so far.
- Motivations for modified gravity theories
 - Black Hole singularity \leftarrow Unphysical!
 - Unification with other forces or Quantization of gravity
 - Alternative to Dark Energy and/or Dark Matter
 - $\boldsymbol{\cdot}$ Useful to contrast their predictions with GR
 - \rightarrow evaluate the correctness of GR

33rd SLAC Summer Institute on Particle Physics (SSI 2005), 25 July - 5 August 2005

27%

68%

Dark Energy

Dark Matter

Tests of Alternative Theories of Gravity

Gilles Esposito-Farèse

Useful lecture note (<u>http://www.slac.stanford.edu/econf/C0507252/papers/T025.PDF</u>) slide (<u>http://www-conf.slac.stanford.edu/ssi/2005/lec_notes/Esposito-Farese/default.htm</u>)

Classifying tests defined by Yunes & Siemens LRR 2013

Top-down approachDirect Tests

One starts from a particular model, and then predicts certain observables that might or might not agree with experiment.

Brans-Dicke, Bigravity, Massive graviton,...

[Narikawa, et al. PRD 2015 is categorized in this.]

Bottom-up approach Model-independent Tests

One considers Einstein's theory as a null hypothesis and searches for generic deviations.

[This work is categorized in this.]

Both approaches are complementary.

Why GR-by-GW Tests?

dynamical regime of gravity. 5

Our Strategy

After usual CBC search with GR template, we perform parameter estimation and model selection against candidate events.

The simplest ppE models

A simple decision scheme based on Bayesian statistics

Detectable regions of ppE corrections to GR

 \rightarrow Suggestion of interesting models with detectable prediction

Here, we focus on a 1.4M_{sun} BNS system, @200Mpc; aLIGO ZDHP the restricted inspiral, ignore spin for simplicity.

Parametrized post-Einsteinian Framework [Yunes & Pretorius, PRD 2009]

$$\tilde{h}(f) = \mathcal{A}(f)e^{i\Phi(f)}\left(1 + \alpha_{\rm ppE}u^{a_{\rm ppE}}\right)\exp[i\beta_{\rm ppE}u^{b_{\rm ppE}}]$$

A generic parametrization which characterizes the departures from GR through free parameters (a, α , b, β).

Restricted Inspiral Waveform in GR

$$\tilde{h}_{\rm GR}(f) = A_{\rm GR} e^{i\Psi_{\rm GR}(f)}$$

$$A_{\rm GR}(f) = \mathcal{A}u^{-7/2} \left[1 + \cdots\right] \Psi_{\rm GR} = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128}u^{-5} \\ \times \left\{1 + \sum_{k=2}^7 \left[\psi_k + \psi_k^{\log}\log(u)\right] \eta^{-k/5} u^k\right\}$$

where the inspiral reduced frequency $u = (\pi M_c f)^{1/3}$

The ppE framework reproduces most the models

$\tilde{h}(f) = \mathcal{A}(f)e^{i\Phi(f)}$	$(1 + \alpha_{\rm ppE} u^{a_{\rm ppE}})$	$)\exp[i\beta_{\rm ppE}u^{b_{\rm ppE}}]$
	(ррд	$/ 1$ $/ \mathbf{PPL}$

$$u = (\pi \mathcal{M}_c f)^{1/3}$$

Theory	$lpha_{ m ppE}$	$a_{\rm ppE}$	$eta_{ ext{ppE}}$	$b_{ m ppE}$
Jordan–Fierz– Brans–Dicke	$-\tfrac{5}{96}\tfrac{S^2}{\omega_{\rm BD}}\eta^{2/5}$	-2	$-rac{5}{3584}rac{S^2}{\omega_{ m BD}}\eta^{2/5}$	-7
Dissipative Einstein-Dilaton- Gauss–Bonnet Gravity	0	·	$-\frac{5}{7168}\zeta_3\eta^{-18/5}\delta_m^2$	-7
Massive Graviton	0		$-\frac{\pi^2 D \mathcal{M}_c}{\lambda_g^2 (1+z)}$	-3
Lorentz Violation	0		$-\frac{\pi^{2-\gamma_{\rm LV}}}{(1-\gamma_{\rm LV})}\frac{D_{\gamma_{\rm LV}}}{\lambda_{\rm LV}^{2-\gamma_{\rm LV}}}\frac{\mathcal{M}_c^{1-\gamma_{\rm LV}}}{(1+z)^{1-\gamma_{\rm LV}}}$	$-3\gamma_{\rm LV}-3$
G(t) Theory	$-\frac{5}{512}\dot{G}\mathcal{M}_c$	-8	$-rac{25}{65536}\dot{G}_c\mathcal{M}_c$	-13
Extra Dimensions	•	•	$-\frac{75}{2554344}\frac{dM}{dt}\eta^{-4}(3-26\eta+24\eta^2)$	-13
Non-Dynamical Chern–Simons Gravity	$lpha_{ m PV}$	3	$\beta_{ m PV}$	6
Dynamical Chern– Simons Gravity	0	•	$eta_{ m dCS}$	-1

8

and may cover unknown models.

[Yunes & Siemens, LRR 2013]

A simple Bayesian decision scheme using the odds ratio as a detection statistic, with approximation $O \propto SNR^2(1-FF)$, setting O_{thr} by requiring a given FAP: $O_{MG,GR} > O_{thr}$ for a FAP \rightarrow MG detection!!

Efficiency E=50% FAP F= 10^{-4}

FF	SNR _{req}
0.9	8.699
0.95	12.3
0.99	27.5

SNRreq : the value of the signal SNR required to detect a given deviation from GR waveform.

The simplest ppE models

$$\tilde{h}(f) = \mathcal{A}(f)e^{i\Phi(f)}\left(1 + \alpha_{\rm ppE}u^{a_{\rm ppE}}\right)\exp[i\beta_{\rm ppE}u^{b_{\rm ppE}}]$$

$$u = (\pi \mathcal{M}_c f)^{1/3}$$

Model 1. phase-modified model: $\alpha = 0$, {b, β } $h_{model1} = h_{GR} \exp[i\beta u^{b}] SNR^{ppE} = SNR^{GR}$

Model 2. amplitude-modified model: $\beta = 0$, {a, α } h_{model2}=h_{GR}(1+ α u^a) SNR^{ppE}≠SNR^{GR} Model 3. 1PN & 1.5PN phase: $\alpha = 0$, { β -3, β -2}

 $h_{model3} = h_{GR} \exp[i(\beta_{-3}u^{-3} + \beta_{-2}u^{-2})] \qquad SNR^{ppE} = SNR^{GR}$

Model 4. 1PN phase & amplitude: { β_{-3} , α_{1} } h_{model4}=h_{GR}(1+ $\alpha_{1}u^{1}$)exp[i $\beta_{-3}u^{-3}$] SNR^{ppE}≠SNR^{GR}

• Model A1. Parameters (β,b), b={-7,-6,...,-1,1,2}.

FF contour

Source:

Model A1. phase-modification: $\alpha = 0$, {b, β } hmodel1=hgR exp[i β u^b] Detectable Region (SNR>SNR_{req})

The results demonstrate that KAGRA has potential to detect phase-deviations from GR.

This is consistent with Vallisneri & Yunes PRD 2013

Efficiency E=50% FAP F=10⁻⁴

Model 2. amplitude-modification: $\beta = 0$, {a, α } h_{model2}=h_{GR}(1+ α u^a) Waveform in FD

Model A2. amplitude-modification: $\beta = 0$, {a, α } h_{model2}=h_{GR}(1 + α u^a)

We derive SNRreq from FF with Vallisneri's method. [Vallisneri, PRD 2012]

Model A2. amplitude-modification: $\beta = 0$, {a, α } h_{model2}=h_{GR}(1 + α u^a) Detectable Region (SNR>SNR_{req})

Binary pulsar observations can do a better constraint than GWs observations.

Model A4. β_{-3} , α_{1} for a fixed b=-3, a=1

$h_{model4} = h_{GR}(1 + \alpha_1 u^{1.5}) \exp[i\beta_{-3} u^{-3}]$

Detectable Region (SNR>SNR_{req})

The constraints on the amplitude and phase ppE parameters are independent from each other.

Strategy

Parametrized post-Einsteinian Framework Approximate Bayesian analysis Detectable regions of ppE corrections to GR

Summary

We demonstrate that adv. GW detectors, including KAGRA, have tremendous potential for new bounds on deviations from GR.

Future

New constraints on Massive graviton and Chern-Simons.

We will calculate the Bayesian odds ratio for weaker signals with a full-scale MCMC in CBC-PE pipeline.

Thank you for your attention.