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Introduction
● Suspensions are not efficient below a few Hz
● If no force applied → tipical rms  10-6 m
● Time the cavity spends in resonance 

Cavity state is known
only at resonance

Force is applyed 
only at resonance

PROBLEM: 

LOCKING ACQUISITION  – Classical approach
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THE IDEA:

Still apply a force out of resonance
● More time available 

→ Less force to apply
→ Less noise injected

● Faster locking acquisition

THE POINT:

Are we completely 
ignorant out of 

resonance?

● We know the dynamics
● We can make an estimation of the state
● We can continue applying a force
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Bayesian approach

MEASUREMENT A PRIORI 

Parameters State

PREDICTION STEP
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(Dynamics)

State space
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Simplyfied model
Position and velocity Wiener process

Harmonic oscillator External force

● Which external force do we apply to slow down the cavity?
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Locking strategies

● Setting a maximal force to push mirrors
● Optimal feedback without noise and without input filtering

● We filter the input force with a low pass filter

Unit step response Parameter

● And see what happens

6



  

Numerical simulation

● Evolution of many cavity states from the same initial state, 
which means a delta function as the initial condition of the 
Fokker-Planck equation

● Consider the evolution between two resonance zones

● Let's call          the velocity when the cavity exits the first 
resonance zone 

● Calculate the final velocity when it reaches the second 
resonance zone or it come back to the first

● Do it with and without an applied force

7



  

Numerical simulation

Cumulative probability distribution
of final velocity in units of 
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Numerical simulation

Cumulative probability distribution
of final velocity in units of 
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Further work

● For each value of the parameter        we have to find the velocity
with the maximum probability of getting the cavity slowed down.

● This simulation was only the first step of Bayesian approach:
the evolution of the probability distribution.

● Next we will implement also the update step.
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Improving the model
● Include PDH information

● Include ring effects
in the PDH signal

● Include radiation pressure
in the dynamics

→ non gaussian
probability distributions

 How to parametrize them?

Sum of gaussians Evolution of gaussians Weight update 

Particle filter
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Include dynamics  parameters

SIMPLE EXAMPLE

- We measure the state (position and 
velocity). With some measurement error.

- We enlarge the space, adding the 
unknown parameter  

- We model our ignorance with a joint 
probability distribution

- We assume we have a good model…
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Include dynamics  parameters

SIMPLE EXAMPLE

- We measure the state (position and 
velocity). With some measurement error.

- We enlarge the space, adding the 
unknown parameter  

- We model our ignorance with a joint 
probability distribution

- We assume we have a good model…

- Now, we measure the position and the 
velocity again,
and apply the Bayesian update step
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Thank you for the attention
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