

Control system and DAQ system using Real time computers and Analog electronics

KAGRA Program Advisory Board@ Toyama University2015/7/25(Sat.)

Osamu Miyakawa ICRR, University of Tokyo

Objectives

- DGS (DiGital control System):
 - provides a platform to establish control systems for an interferometer and subsystems of KAGRA.
 - provides a DAQ (data acquisition) system.
 - provides many flexible functions like monitors/ diagnostics/human interfaces.
- AEL (Analog ELectronics):
 - manufactures necessary circuits for subsystems of KAGRA.
 - connects subsystem and computers for flexible control.

DGS (DiGital control System)

- Provided real time control software from LIGO.
- Constructed hardware and networks step by step at Kamioka site.
 - A. 2009-2010 prototype test @ CLIO
 - Basic IFO operation and noise performance
 - B. 2010~ standalone system for KAGRA subsystems
 - C. 2011 Small network test with 1 master and 2 RT PCs
 - D. 2012-2013 Full test@ Kamioka new building
 - Closer to real scale PCs and network

JGW-G1503843 2015/7/25 KAGRA PAB 3

KAGRA System upgrade

	Stand alone FY2010-	Small network FY2011	Large network FY2012, 2013	Full system FY2014~
Real time PC	1	2	5	~30
IO chassis	1	2	5	~30
ADC	1	2	~10	~65
DAC	1	1	~10	~45
Binary Output	1	0	~10	~85
Long distance RFM	0	1	2	3
Short distance RFM	0	1	2	2
DAQ network switch	0	1	4	4
Timing switch	0	1	3	3
Boot server	0	1	3	3
Network file system		0	1	1
Build server	0	0	1	1
NAT	0	0	2	2
Data concentrator	0	0	1	1
NDS distributer	0	0	2 (redundant)	2 (redundant)
Frame writer	0	0	2 (redundant)	4 (redundant)
IRIG-B switch	0	0	1	3
Data storage	1TB (local)	1TB (local)	~20TB x2 (ext.)	~200TB (ext.)

Red: New items Green: increment

in the mine

Diagram of KAGRA controls system

Diagram of KAGRA controls system for Real Time Front-End

Control/DAQ network

1nds0

k1fw0

k1fw1

- k1dc0: data concentrator from all RTFE
- k1nds0/k1nds1: network data system as response server for realtime/past data request
- k1fw0/k1fw1: frame writer
- k1dm0/k1dm1: frame data manager for local 20TB storages and remote 200TB storage

k1dm0 k1dm1

20TB storage 20TB storage

UPS

200TB storage

Outside

KAGRA Field rack

- A Field rack includes
 - IO chassis with ADC/DAC
 - AA/AI filter chassis
 - whintieng filter chassis
 - electronic circuit chassis
 - no Real time PCs
 - no DC power supplies
- Field racks are located in the laboratory area with a plastic cover to avoid humidity by heating of electronics

: 25~30°C inside temp.

– inside humidity: 45~35%

outside humidity: 70~90%

Network design

KAGRA Remote control room

- 5 desks with 3 monitors
- 7 large monitors for sensitivity etc.
- 3 middle monitors for detailed information.
- 7 small monitors for beam spots.

• 200TB storage in the small server room.

RT models, MEDM screens

- Initial models are being developed by DGS referring to LIGO models.
 PSL, MC SUS, ASC, LSC
- VIS group are developing a model for Type B suspension.

- Real time models and MEDM screens for all subsystems
 - Basically this task should be assigned to each subsystem, but DGS may provide a typical initial model and screens.
- Installing Gurdian (script, diagnostic manager).
- 3km connection and delay test.

Objectives

DGS (DiGital control System):

- provides a platform to establish control systems for an interferometer and subsystems of KAGRA.
- provides a DAQ(data acquisition) system.
- provides many flexible functions like monitors/ diagnostics/human interfaces.

AEL (Analog ELectronics):

- manufactures necessary circuits for subsystems of KAGRA.
- connects subsystem and computers for flexible control.

AEL (Analog Electronics)

- Manufacturing almost of electronics for KAGAR
- Basically design is provided by each subgroup, but AEL may propose some appropriate designs .
 - Using LIGO design as possible.
- Expected number of circuits: 150 kinds of item, 800 boxes!
 - May increase x1.5 times if actual drivers or interfaces are considered.
 - Prototype: 95 boxes, iKAGRA: 456 boxes, bKAGRA: 253 boxes
- Very serious problem: human resource
 - Osamu Miyakawa
 Chief, contact to subsystem for design and concept
 - Masahiro Kamiizumi
 Sub chief, Drawing diagram and board, Parts ordering, Assembling
 - Kyosuke Awai
 Joined from this February, working at other place during June to October.
- Started asking outside company from ordering parts, but still tasks are too many.

Assigned tasks in FY2015

Current task	Sub system	Qty.	achievement	status
LVDT driver	VIS	20	100%	Completed
LVDT distributor	VIS	20	100%	Completed
High power coil driver	VIS	6	80%	Being assembled to chassis
Low power coil driver	VIS	20	80%	Being assembled to chassis
Satellite box	VIS	10	90%	Being assembled to chassis, partially completed and being tested.
Satellite box	VIS	20	0%	Not started.
MC servo	100	1	90%	Being assembled and tested
RF PD	MIF	30	40%	Ordered to company, being manufactured
RF QPD	MIF	5	40%	Ready to be manufactured
RF PD interface	MIF	5	20%	Being Designed
RF QPD interface	MIF	5	20%	Being Designed
I&Q demodulator	MIF	5	100%	Completed
Whitening filter	MIF/GIF/DGS	10	100%	Done, being inspected
24V DC power strip	AEL	30	60%	Being manufactured 16

Manufactured electronic circuits for control

Manufactured electronic circuits for suspensions

Inspection

Whitening filter:

• 4bit for 0-45dB variable gain, 3dB step

• 3bit for 3 orders whitening with 1Hz zero: 10Hz pole

8ch in 1U chassis

Test for whitening filter:

T.F.: $8ch \times (4x4)bit \times 3bit = 384$

Noise: $8ch \times (4x4)bit \times 3bit \times 4span = 1536$

Total: 1920 measurements!

Automated inspection:

- Measurement using a SR785 controlled by python code on a remote computer through GPIB.
- Remote controlled relay switch box to measure D-SUB 9pin 4ch signals at once using a single channel SR785.

DGS:

- Quite going well.
- Real time models and MEDM screens should be prepared.

AEL:

 We are continuously manufacturing analog circuits, but human resource is a very serious issue.