Suspension Dynamics Modeling
for (TAMA and) LIGO and KAGRA

= RA Prehistory

e Started modeling the X-
pendulum | developed
for TAMA300 at ICRR
1993-7.

* Originally Mathematica
v2.2 (now v10.1)!

@) MBP15 HD) Users) mbarton) Work) TAMA) Calculations) 2DX Analysis W
Name ~ Date Modified Kind Size Access
& 2DXOrigOpt.m £ | Wednesday, June 5, 1996|at 12:55 PM Objec...code 254.4 KB -rwxrw...x (777)

<o
KACRA

Glasgow Matlab Models

Calum Torrie modeled the GEO triple as part of
nis PhD (LIGO-P0O00040-v1).

Lots of hand-coded Matlab — hard to check and
nard to modify. Also lots of simplifications to the
physics.

Ken Strain extended Calum's code to model first
aLIGO QUAD prototype.

These were being used to design aLIGO
suspensions.

Needed something to compare these models
against and allow for future improvements.

G/RR The Mathematica Toolkit,
PendUtil.nb

* The X-pendulum model was developed into a general toolkit.

« Implemented as a Mathematica “package”, PendUtil.nb, for
specifying different configurations (e.g., quad, triple etc) in a
(relatively) user-friendly way

« Supported features:
— 6-DOF rigid bodies for masses (no internal modes)
— Springs described by an elasticity tensor and a vector of pre-load forces
— Massless wires (i.e., no violin modes) but detailed elasticity model from beam equation
— Arbitrary frequency-dependent damping on all sources of elasticity
— Symbolic up to the point of minimizing the potential to find the equilibrium position

— Calculates elasticity and mass matrices semi-numerically (symbolic partial derivatives of
functions with mostly numeric coefficients)

— Eigenfrequencies and eigenmodes calculated numerically

— Arbitrary frequency dependent damping on each different elastic element
— Transfer functions

— Thermal noise plots

— Export of state-space matrices to Matlab and E2E

RAL

K

A

CRA

C T CF

E,= EP(Xeq)+%(X_Xeq)T K(X_X“‘f)

Based on standard method of

mass/stiffness matrices

Express the potential energy of the system in
terms of the coordinates:

E,=E,(x,.x,)=E,(x)
Express the kinetic energy of the system in
terms of the coordinates and velocities:

E,=E; (xl,.._xn,)'cl,..jcn)

Minimize the potential energy to find the
equilibrium values of the coordinates.

Xeg = (xl(m) >+ Kn(eq))T

Compute the matrix of second derivatives of
potential, a.k.a., the potential energy matrix
or the stiffness matrix.

JE
K:K, = .-
Y dx,dx;

J

X=X,

Compute the matrix of second derivatives of ’
kinetic energy, a.k.a., the kinetic energy
matrix or the mass matrix:

M:M. = IEg

E,=1x"Mx =K
' 0x,0%;

x=0
X=X

eq

Write matrix equations of motion and solve
for particular numerical frequencies using

X=iwx=2rmix X=-Qrf)x

Mx = -Kx+Cx +f

external external

external external)

x=(K-(27f) M) (CX,y +1

Or, assume a sinusoidal solution with no
external forces

Ke, = »,’Me,

Do a simultaneous diagonalization to obtain
the eigenfrequencies f, = w,/2n and
eigenmodes ¢;:

x,(1)=x,, +ee”

1

See Goldstein, "Classical Mechanics", 3" Ed.

RA

C—— Rigid-body mass coordinates

e Six coordinates for center of mass (COM): x, v, z,
yvaw (Y), pitch (P), roll (R)

 Three extra "body" coordinates for non-COM
points such as wire attachments

space Xcom cosY —sinY 0 cosP 0 —sinP 1 0 0 Kbody
.) x (Roll) z (Yaw)
cae 1= Yeow |T| sinY cosY O 0 1 0 0 cosR -—sinR Voods
z 0 0 1 sinP 0 cosP 0 sinR cosR \
. com Zhody

[Xcom } (cosPcosY cosYsinPsinR—cosRsinY cosRcosY sinP +sinRsinY }[Xbody
+

cosPsinY cosRcosY +sinPsinRsinY cos Rsin PsinY —cosY sinR Viods
—sin P cos PsinR cosPcosR

=1 Ycom
y (Pitch)

Zcom Zbody

* The model definer needs to provide a list of the
COM coordinates of all the masses.

== Kinetic energy

* There is typically a linear term in terms of mass m plus angular term
in terms of moment of inertia tensor [I:

EK:%m(x2+y2+z'2)+%(0, 0, o,)

IXJ(
I, I, I,
IXZ

* [isin body coordinates so the angular velocity vector needs to be
transformed:

o, —sin P 0 1 Y
®, |=| cosPsinR cosR 0 P
o cosPcosR —sinR 0 R

* The model definer needs to supply a Mathematica expression for
the kinetic energy for all masses, with terms similar to the above.

== Gravitational energy

E. =mgz

 The model definer has to supply a
Mathematica expression giving the total
gravitational potential for all masses.

s Wire energy

* Wire energy is broken into four E():Yf j(fﬂyj dl+YA2/12
terms:
1

— Longitudinal stretch based on Epw,-m,mg,-mdi,ml)=5kw(l(t)—lo)2
straight-line distance

— Bending near the endpoints _T oy
. . P(wirefexlrafstrelch) - 2 J.O dl
— Extra longitudinal stretch due
to bending
- To rs i O n EP(wireJorsional) = %(% + GJe) A072"

* Model definer needs to supply
a list of parameters for each
wire, including Young's
modulus, length, moment of
area, attachment points, etc,
etc.

= Flexure correction

Wire bending terms use some complicated 3D
geometry and are slow to calculate.

It turns out there's a shortcut: the wire behaves
as if attached with a hinge at a distance a from
actual break-off point, where

flexure
length (a)

El AN
a = effective
T) flexure
e point

@

E=Young's modulus, | = second moment of area,
T = tension

This trick was not used in the Mathematica
toolkit but has been used in the exported
Matlab code.

== Springs

* Simple zero-length spring model connecting a point on
one mass to a point on another.

* 6x6 matrix of elastic constants plus a 6x1 vector of pre-
load forces:

K xx K xy KXZ KrY KxP K xR
Ax Ax
KX}' KY}’ K}‘z K Y K yP K YR Ay Ay
1 (sz Kyz Kzz KzY KzP KZR Az Az
o =5 A Ay Az AY AP AR +(X ")
P(spring) 2 y ny Kyy sz Kyy Kyp KYR AY f f y ﬁ f Y f P f R AY
K xP K yP K zP K YP K PP K PR ﬁ g
K xR K YR K ZR K YR K PR K RR

 Model definer has to provide a list of springs with
masses, attachment points and elastic constant and
pre-load information.

C—— Extra coordinates

 As well as the coordinates
used in the normal mode

analysis ("vars"), two caram I
other sorts are important:

— "params" — the support and float I i

other objects which are

stationary during normal

modes but move for var I
transfer functions

— "floats" — things like wire-
spring junctions with no
associated mass

T~ p) . .
CRA stiffness matrix for extra
coordinates

It is convenient to calculate a master stiffness matrix with partial
derivatives between all types of coordinates:

RAL

_ (%]
. % E
& (q0) —
o (g]
S & o
K Cy Cx | "vars"
Ko =| Cox Q Cy "floats"
Cy Cy S | "params"

K, Qand S give the coupling among vars, floats and params within their
respective groups.

* Cyo Cqs and Cg, give the coupling between groups.

* Because the "floats" are dependent on the others, they need to be
eliminated:

_ -1 _ _ -1 _ -1
Keﬂective =K- CXQQ CQX CSX(effective) - CSX CSQQ CQX Seﬁective - S - CSQQ CQS

== Damping

Lossiness in elastic components can be represented by a

complex elastic constant:
k— k(e (0)+ie” (w))

The real and imaginary parts should satisfy the Kramers
Kronig relationship:

2 re’(x) 2 te(x)-1
! —1=—PV | —=4d ” =——PV | ——d
g (o) — ix—a) x e”(w) . J; o

If losses are small, the real part can be assumed to be
constant: «k-k(1+is(/)

The model definer can specify a different damping function
for each elastic component.

The toolkit keeps track of which damping function applies
to which coefficients in the master stiffness matrix.

* Wire ¢ usually
has a
frequency-
independent
"structural”
term and a
frequency
dependent
"thermoelastic
"term.

0.0014 —
0.0012 —
0.0010 —
0.0008 —
0.0006 —
0.0004 —

0.0002 F

¢

Wire/Fibre damping

1

| | | | f (HZ)
10 100 1000 104

* Thermoelastic damping

has a characteristic peak
at the timescale of heat
flow across the wire.

— HLTS

— HSTS

C—— Thermal Noise

* Suspension thermal noise is a potential
limiting factor in GW detectors.

* Noise is given in terms of damping by
Fluctuation Dissipation Theorem:

_ 4k,TRe(Y (0))

w2

x ()

* Y is the admittance (v/F) at a test point where
the thermal noise is to be calculated.

——— Dissipation Dilution (i)

* |n a simple mass-spring system, the quality
factor of the oscillation depends purely on the

spring material: ,__!
¢material

* However systems such as pendulums and
wires are used in GW detectors because with
certain geometries, the damping (dissipation
of energy) is "diluted": o ¢D !

I
\

== Dissipation Dilution (ii

* The dissipation dilution factor D
depends on the fraction of the energy
involved in first-order stress changes of
the material.

e Pulling a pendulum or violin string I
sideways creates only a second-order or
smaller stretch -> dilution.

 (Quick test: calculate the contribution to
the potential matrix for each potential
term twice, once with and without all
tensions zeroed.

RA

= Calculation Procedure (i)

The model calculation notebook is run.

It loads the model definition notebook, which loads the
toolkit, the model definition, and a default set of numerical
values.

The calculation notebook can then selectively override
some of the numerical values.

The wire and spring lists are processed to create a list of
potential terms, each with a damping function.

The total potential is computed, with numerical values for
all quantities except the "var" coordinates. (Usually the
wire bending potential terms are omitted for speed.)

The total potential is minimized to find the equilibrium
position.

<
&A/GRA Calculation Procedure (ii)

* Numerical values for everything but the coordinates
are substituted into the potential terms.

 The potential terms are differentiated to find the
stiffness matrix elements. Each term is processed
separately for two reasons:

— for speed (each term depends on only a few coordinates,
so most derivatives are zero and don't need to be

computed)
— to keep contributions with different damping functions
separate.
 The process is repeated with the tension switched off,
to allow dissipation dilution to be calculated.

<
&A/GRA Calculation Procedure (iii)

* \Versions of the stiffness matrix with and without damping are
calculated.

* The stiffness matrix without damping (a totally numerical matrix) is
used to calculate the eigenfrequencies and eigenmodes.

* The stiffness matrix with damping (a mostly numerical matrix that is
a Mathematica function of frequency, f) is used for all other
purposes.

 Mathematica functions are provided to allow transfer functions
from/to selected inputs/outputs, thermal noise plots at selected
test points, eigenmode shape plots etc.

* |f the small but time-consuming wire bending/torsion potential
terms were omitted at the beginning, they are computed and
added in.

S Models for LIGO

* Models defined for all the LIGO suspensions
(no KAGRA yet):

— QUAD: single chain of AdvLIGO quad pendulum,
with 4 masses, 6 blade springs and 14 wires.

— BSFM, HSTS, HLTS: 3 masses, 6 blade springs
and 10 wires.

— OFMC, TMTS: 2 masses, 2 or 4 blades, 6 wires

— HAUX, HTTS, OFIS: 1 mass, assorted blade/wire
combinations

— Many toy models

2 blade springs

2 Wires

top mass

2 blade springs

4 wires

upper intermediate mass
2 blade springs

4 wires

iIntermediate mass

4 fibres (or wires)

optic (or reaction mass)

Example model:
LIGO quad pendulum

!

Model
"20140304TMproductionTM"

The aLIGO quad suspension
main chain, with monolithic
final stage (i.e., fused silica
fibres supporting the test
mass)

Sample Output (i)
Table of Mode Fregs/Shapes

0 N U WN R Z

NNNNNRRRERERRRRE R 2O
B W NEHEOWOOWNOU D WN RO

.432096
.461778
.522439
.552861
.599185
.86847
.99234
.04328
.33906
.34913
.59901
.98325
.10062
.22968
.39081
.64322
.74352
.0388
.30053
.39905
.56066
.08788
.68987
13.8069

W Ul WWWWNDNMDMNMNNMMNNRERFRRFRERREOOOOOOOH

type
pitch3
y3
pitch3
z3
yaw3
rolll
pitchO
y2
pitchO
yaw3
pitchO
pitchO
rolll
z0
yaw0
pitchl
pitchl
yawl
pitchO
x0

zl
rollo
z2
roll2

pitch2
roll3
pitch2
z2
yaw2
roll3
pitchl
yl
pitchl
yawl
pitch2
x0

y0

zl
yaw2
rolll
pitchO
yaw0
rollo0
x1

z0
pitchO
z3
roll3

pitchl
roll2

roll2
x2

y3

x1
vyl

roll0

rolll
pitchO

<o

ARAL) Sample Output (ii

[] []
~= |Individual Mode Shape
out34]= 0.432096 p
In35]:= pretty[Chop[e2ni.eigenvectors2[[-1]], 10" -4]]

out[35/iTableForm=

X y z yaw pitch roll
Mass N 0.0446664 0 0 0 -0.324194 0.00109208
Mass U 0.0791596 0.000232412 0 0 -0.380551 0.00221296
Mass 2 0.12786 0.000408359 0 0 -0.54992 0.00186767
optic 0.244087 0.000781052 0 0 -0.602881 0.00187027

In[111]:= DoWithStatus["Plotting stage 2 mode 1",
eigenplot[eigenvectors2[[-1]], 0.5, {0, -3, 0}, floatmatrix2]]

!

out[111]=

A Sample Output (iii)
Transfer Function

Transfer function from x motion of the support to x motion of the optic

In[106]:= DoWithStatus ["Plotting stage 2 x transfer function",
PlotTF [eom2,coupling2, supportxinput,opticxoutput,0.09,10]
]

1000 +
10 +

0.100 -

Out[1086]=

0.001

10—5 L

10"'7 L

0.1 0.5 1 5 10

In[107]:=

out[107]=

RA Sample Output (iv)

Thermal Noise

Thermal noise in x motion of the optic, scaled to give strain noise for four optics

DoWwithStatus ["Plotting stage 2 x thermal noise”,
PlotTN[eom2,opticxoutput,0.1,20,Sqrt[4]/ifo[Infrastructure,Length]]
]

10714 |
10716 |

10—18 L

10—20 L

10—22 L

" 0.1 05 1 5 10

== State Space Terminology

* For simulations, it is convenient to write the equations
of motion in state-space format. In traditional notation:

X | [A B X
oY
— X: vector of state coordinates
— u: vector of inputs
— y: vector of outputs
— A: state matrix (maps state to rate of change)
— B: input matrix (maps u to rate of change)
— C: output matrix (maps state to output)

— D: feedthrough matrix (maps inputs directly to output)

~ ~ p)
LKA/GRA SS State/Inputs/Outputs
for Suspension Models

* In mechanical simulations, the EOMs are second-order,
so the full state needs to be the coordinates ("vars"

plus the velocities: [.) .
X — < (i j:A[i)+Bu

* A good set of inputs is the support coordinates
("params") plus input forces on the main coordinates:

S
S
fx

* A good set of outputs is all the main coordinates plus
the reaction forces on the support:

e

u=

Full State Space

for Suspension Models

X 0<NX><NX>
%
0<Nx><Ns>
+ —M_1C<N'¥XNA>

T(Nﬁzv‘)xl) [
+{

[V

X
fs

_ C<Nl\ XN}

0<vi><N:>
_S<NngS>

(2N, x1)
j _[MKW

I<Nx><Nx>

(2N 2N,) (2N 1)
X
-M'E, "]) j

{(2N+N,)x1)
S
} :
fX

0<NxxNS> 0<NX><NX>

_M_IEB<NX><NA> M_1<Nx><Nx>

(rempars) - ana)
0<NA><NX> X x
O(NSXN‘> %
NN+ (2N +N)x1)
QNN gioN) (e M) (g
S
_ED<NX Ny NN N

K is the stiffness matrix; M is the mass matrix

Cis the coupling stiffness matrix; S is the support stiffness

The E matrices are arrays of velocity damping coefficients.

Sizes of matrices and vectors are given as <Nrows x Ncolumns>.

== Matlab Export

* All the components of the SS A/B/C/D
matrices can easily be exported from
Mathematica as numbers or Matlab code.

* For symbolic export, it's better to export M
and calculate M in Matlab.

s Usage at LIGO

Mathematica models were used to study thermal noise and
asymmetrical suspensions.

The GEO Matlab models were retained but had the hand-written
state-space matrices replaced with improved code generated by the
corresponding Mathematica model.

Matlab models were used for analysis of experimental data and for
control design.

All Mathematica models are hosted on the SUS SVN (Subversion
version control system) at
https://redoubt.ligo-wa.caltech.edu/websvn/listing.php?
repname=sus&path=%2Ftrunk%2FCommon
%2FMathematicaModels
%2F#path_trunk_Common_MathematicaModels_ (needs LIGO.org
credentials).

Matlab models are in the same SVN but scattered about.

= References

* LIGO-T020205 - Models of the
Advanced LIGO Suspensions in Mathematica™

e LIGO-T080188 - Models of the Advanced LIGO
Suspensions in MATLAB

e https://awiki.ligo-wa.caltech.edu/aLIGO/

Suspensions/OpsManual (needs LIGO
credentials or see LIGO-E1200633).

* LIGO-T070101 - Dissipation dilution
e LIGO-T080096 - Flexure corrections

—— KAGRA

e Sekiguchi-san has used some of the ideas and
written his own package.

* Much more automated and easy to use.

* Probably no need (certainly no plan) to redo
KAGRA models with LIGO toolkit.

* Not too hard to do if there is a need for say
detailed thermal noise plots.

