

Development of

KAGRA Burst Pipeline

Kazuhiro Hayama

on behalf of KAGRA Burst Group

KAGRA Burst Group

● Hayama

● Arima, Kanda,Yokozawa

● The burst pipeline is being developed using

– KAGALI (C-based)

– HasKAL (Haskel-based)

The role of HasKAL is mainly two
● As a wrapper of KAGALI library

● As a detector characterization library

Speed is 1~2 x C

Parallelization is very easy!

Flow Chart

Data from KAGRA
IFO

Kamioka Mine Analysis Building

Data from KAGRA

● Data is transferred to the analysis

building via optical fiber lines.

● The data is first stored in a server with

200Tib storage.

● The data will be ~TByte/day. So we

need to have a database system as a

part of the KAGRA DAQ system.

Database

● framecache

● Database

Two methods are being developed.

The approach to be adopted will be decided with
DMG subsystem.

framecache

Format of the framecache is not defined yet.

What parameters should be included?

Database
● UpdateFrameDB

The information of the file is inserted into a database as soon as a frame file is

stored in a specific directory.

● The database engine is MySQL.

Accessing Database

● Command line tools

– kagraDataFind
If you give GPS start time, duration, channel_name,
you can get a list of corresponding frame files.

e.g.
kagraDataFind 1113212555 100 "K1:PEM-EX_MAG_Z_FLOOR"

The software

● MySQL 5.6.24
http://www.mysql.com

● Generation of framecache
https://github.com/gw-analysis/detector-characterization/blob/master/HasKAL/src/Has
KAL/FrameUtils/FileManipulation.hs

● Database using MySQL
https://github.com/gw-analysis/detector-
characterization/tree/master/HasKAL/src/HasKAL/DataBaseUtils

https://github.com/gw-analysis/detector-characterization/blob/master/HasKAL/src/HasKAL/FrameUtils/FileManipulation.hs
https://github.com/gw-analysis/detector-characterization/blob/master/HasKAL/src/HasKAL/FrameUtils/FileManipulation.hs

Data Structure

● The data is defined below
https://github.com/gw-analysis/detector-characterization/tree/master/HasKAL/src/Has
KAL/WaveUtils

●

https://github.com/gw-analysis/detector-
characterization/blob/master/HasKAL/src/HasKAL/WaveUtils/Data.hs

https://github.com/gw-analysis/detector-characterization/tree/master/HasKAL/src/HasKAL/WaveUtils
https://github.com/gw-analysis/detector-characterization/tree/master/HasKAL/src/HasKAL/WaveUtils

Handling data

Every data processing comes with GPS time, …

So that we can avoid careless miss like wrong sampling

frequency, time shift etc.

Data Conditioning

● Clean Data Finder (Yokozawa)
To find “stationary” data without any tangients

● Whitening (Hayama)
To remove frequency dependency from the data

● Line Removal (Asano)
To remove narrow-band artifacts s.t. violin modes

KAGRA Data

Conditioned Data

Data Conditioning
- Whitening
- Line Removal

Clean Data

Data Conditioning

● Linear Prediction Error Filter

– Estimating IIR filter coefficients that obtain a transfer
function having inverse of the PSD.

– Very stable

The software

https://github.com/gw-analysis/detector-
characterization/blob/master/HasKAL/src/HasKAL/SignalProcessingUtils/LinearPrediction.hs

Line removal :
https://github.com/gw-analysis/detector-
characterization/tree/master/HasKAL/src/HasKAL/LineUtils/LineRemoval

As a wrapper of KAGALI

FIR, IIR Filter
by Ueno

Parallelization in Haskell

● If you replace computeS to computeP, then codes are
parallelized!

● Excess power based method to find signal

– Detection on Time-Frequency maps

● Short Fourier Transform (Hayama)
● Constant Q-Transform (Hayama)
● Wavelet Packet Transform (Yokozawa)

– Event Selection

● Pixel clustering
● Other method needed!

Event Trigger Generation

Conditioned Data

Event Triggers

Event Trigger Generation
- T-F Transform
- Event Selection

Event Trigger Generation

Event Selection:
Simple clustering method may not work

The software

Background Study

Event Triggers

Vetoed data

Injection (Soft, Hard)

Background Study
- Software and Hardware Injection
- Setting Threshold

Injection

● Injection (Hayama)
To estimate background noise and set detection threshold.

– Software Injection
Currently implemented using S5 burstMDC

– Hardware Injection

To be discussed with DGS group (?)

Injection (Soft, Hard)

KAGRA Data

Conditioned Data

Data Conditioning
- Whitening
- Line Removal

Clean Data

The Software

● https://github.com/gw-analysis/detector-
characterization/tree/master/HasKAL/src/HasKAL/SimulationUtils/Injection

 https://github.com/gw-analysis/detector-
characterization/tree/master/HasKAL/src/HasKAL/DetectorUtils

Calculation of antenna pattern (Hayama)

Parameter Estimation

● Not yet implemented

● One of featured parameter estimation of the burst analysis in
KAGRA is Hilbert-Huang Transform. (Kaneyama)

Alert

● Not yet determined.

● VOEvent is one of good candidates.

– Duration, Power, Frequency, Waveform, Sky region

