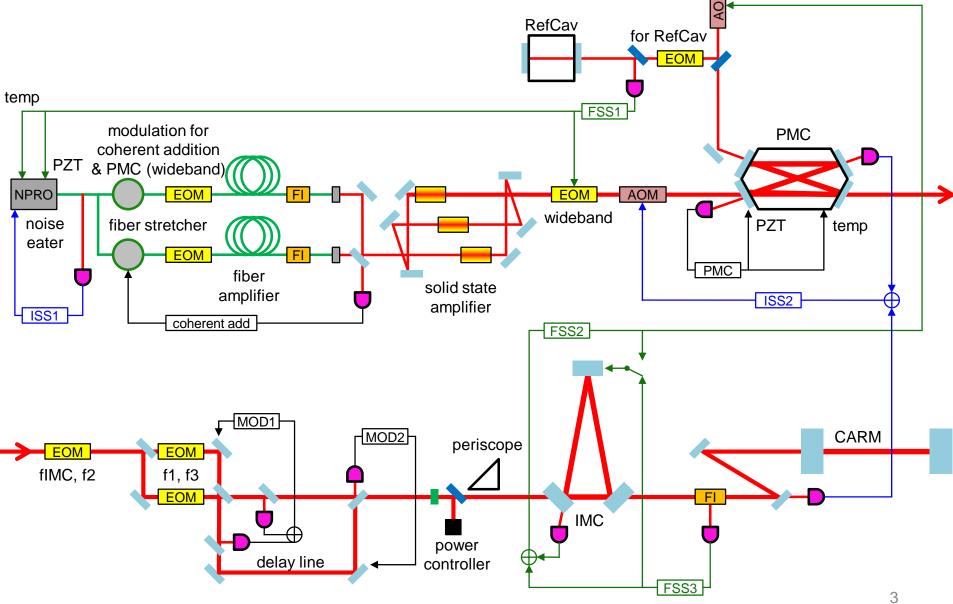
January 10, 2016

bKAGRA PSL Design Study


Yuta Michimura

Department of Physics, University of Tokyo

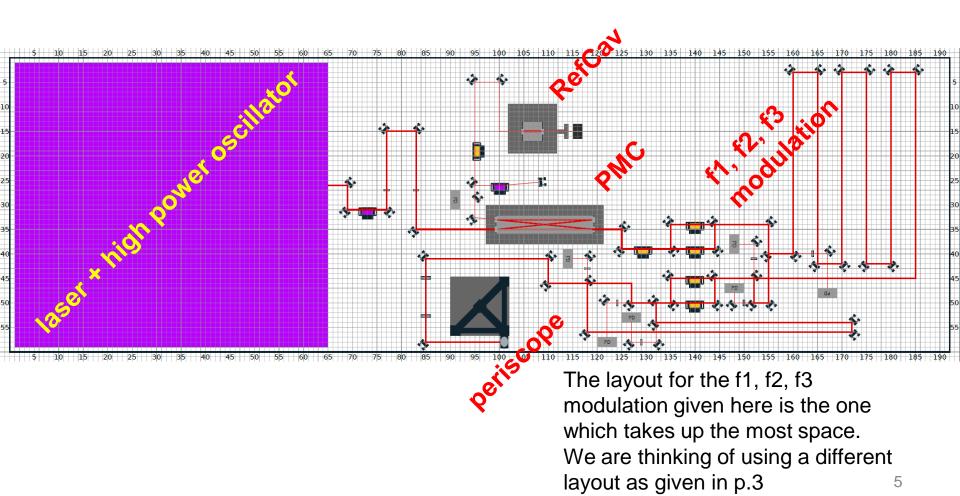
Scope

- Collect information for bKAGRA PSL
- Give first proposal for bKAGRA PSL design
- Start discussion on noises and control loops PMC, FSS, ISS
- References:
 - JGW-G1503293, JGW-G1402866 (laser setup)
 - <u>JGW-T1402349</u> (iKAGRA PMC)
 - JGW-G1503515 (bKAGRA PMC)
 - JGW-T1503330 (FSS modeling)
 - <u>JGW-D1503389</u> (ISS plan)
 - JGW-D1503189 (EOM layout plan)
 - JGW-T1402332 (beam jitter requirement at PSL)
 - <u>LIGO-T0900649</u> (aLIGO PSL Final Design)
 - N. Ohmae, PhD Thesis (2010)

Schematics NO

Concept

• RefCav after PMC to reduce beam jitter


-> wideband EOM after fiber amplifier to avoid phase delay (Another possibility is to put RefCav and wideband EOM both before the fiber amplifiers. In this case, we don't have to use high power wideband EOM, and RefCav servo stay locked when PMC is unlocked. However, beam jitter might be a problem.)

- Use PMC auxiliary transmissions for RefCav and ISS to save power
- Simple, but loss less f1(PM-AM), f2(PM), f3(AM) modulation
 -> PM-AM switchable for f1
 loses some f3 AM, but doesn't matter much
 since f3 AM is used only for the lock acquisition
- Use less EOMs as possible

-> use same EOM for coherent addition and PMC servo use same EOM (doubly-resonant) for f2 and IMC use same EOM (doubly-resonant) for f1 and f2

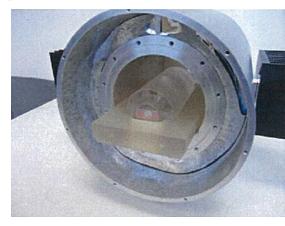
Actual Layout

- all fit in 4.8 m x 1.5 m bKAGRA PSL table
- see <u>JGW-D1503484</u> for the updated layout

Pre-Mode Cleaner

- bow-tie cavity, aluminum spacer (aLIGO-like)
- at design phase (see <u>JGW-G1503515</u>)

finesse	155	
round trip length	2.02 m	Fused Silica, 1inch dia x 0.25inch thick
FSR	150 MHz	ROC 3 m T = 80 +/- 20 ppm @ 5.655 AOI
cavity pole	480 kHz	(AR: R < 0.1 %)
TMS	42 MHz	PZT attached
		100 mm
FSR: free spectral range TMS: transverse mode spacing	I	Fused Silica, 1inch dia x 0.25inch thick Flat R = 98 +/- 0.2 % @ 5.655 AOI (AR: R < 0.1 %)

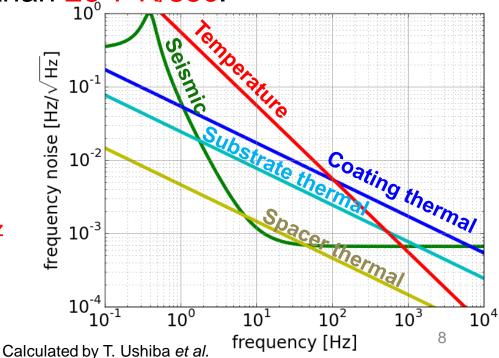

Reference Cavity

- linear cavity, ULE spacer
- already made (currently at Kashiwa) including Zerodur support, thermally insulated vacuum can, temperature control
- Specsheet available from <u>JGW-T1503493</u>

finesse	3e4
round trip length	2*100 mm
FSR	1.5 GHz
cavity pole	22 kHz
TMS	0.22 GHz

 we call it a RefCav or FRC (frequency reference cavity; it stands for fiber ring cavity in iKAGRA!)

Photo from N. Ohmae



RefCav Frequency Stability

- long term drift should be smaller than ~100 mHz/sec
 It corresponds to 8.4 kHz/day and the daily drift will be smaller than the arm cavity FSR (50 kHz). So, we can lock the arm cavity at the same fringe every day.
- this can be achieved by stabilizing the temperature within +/- 1 K at the thermal expansion zero crossing point (this gives < 2e-9 /K of the thermal expansion), and making the temperature drift smaller than 2e-7 K/sec.
- estimated frequency stability is shown right seismic: 1e-9 (1Hz/freq)**2 m/rtHz vibration sensitivity: 3e-8 vibration isolation: 1x Minus K

thermal expansion: 2e-9 cavity temperature: (1Hz/freq) uK/rtHz

coating Q: 2500 substrate Q: 1e6 spacer Q: 6e4 coating thickness: 4 um

Frequency Stabilization Servo

- Modeling on going
- See <u>JGW-T1503330</u> for preliminary result
- It looks like the current PSL design basically meet the requirements

Intensity Stabilization Servo

- No modeling yet
- See <u>JGW-D1503389</u>

EOM Layout for f1,f2,f3 Modulations

- Calculation for deciding the layout on going
- See <u>JGW-D1503189</u> (we are considering of choosing layout 3)
- Sideband amplitudes we need f1 PM: J1(0.15) [J1(0.2) at maximum] f1 AM: 0.65*J1(0.15) [optional for DRSE; 65% of PM] f2 PM: J1(0.05) [J1(0.1) at maximum] f3 AM: 0.05 [only used for lock acquisition]
- Unwanted sidebands

 f1 harmonics: requirements to be calculated
 f3 harmonics: requirements to be calculated
 unwanted f1 AM: requirements to be calculated
 unwanted f2 AM: requirements to be calculated

Beam Jitter

• Requirements for PSL periscope mirror displacement/tilt are $\delta x < (5 \times 10^{-10} + 5 \times 10^{-3} \text{ Hz}/f^4) \text{ m}/\sqrt{\text{Hz}}$ $\delta \theta < (2 \times 10^{-11} + 2 \times 10^{-4} \text{ Hz}/f^4) \text{ rad}/\sqrt{\text{Hz}}$

(see <u>JGW-T1402332</u> for derivation)

• We have to design a periscope to meet this requirement

People in Charge

- Overall layout [Nakano]
- PMC [Nakano, Michimura, UToyama]
- RefCav [Michimura?]
- FSS [Michimura]
- ISS [UToyama]
- EOM [Uehara, Shiga, Somiya]
- Periscope [??]