Large-scale Cryogenic Gravitational wave Telescope: KAGRA

Conference on Laser Energetics 2015,

Takayuki TOMRU

High Energy Accelerator Research Organization (KEK) on behalf of the KAGRA collaboration

Gravitational Wave and Its Detection

Gravitational Wave

There are many proof of GR. But it is not still completed.

One of symbolic phenomena in General Relativity

charge rotation (dipole). But the system with masses can not be neutral, and it radiates GW with twice frequency of the rotation (quadrupole).

Gravitational Wave:

Propagation of Space-time distortion

It induces gravity tidal force

Motion of test particles by GW tidal force

But this effect is really small.

GW detection is figured such as "Like a search of Hydrogen atom between the Earth and the Sun."

Principle of GW Measurement by Michelson Interferometer

When length difference between both interferometer arms are occurred by GW, leakage of light will be dropped onto CCD.

Sensitivity Limitations of Interferometric GW Detector

A Practical Configuration:

Power Recycled Fabry-Perot Michelson Interferometer

These are 1st generation Technologies.

Initial LIGO Sensitivity improvement

Large-scale Cryogenic Gravitational wave Telescope -KAGRA-

2nd Generation Interferometric GW Detector

Sensitivity Improvement Plan in 2nd Generation GW Detector

A theme in 2nd generation GW detectors is how we can reduce "thermal noises"

Sensitivity Improvement Plan in 2nd Generation GW Detector

The sensitivity of 2nd generation GW detectors will be limited by "quantum noises".

Cryogenic Mirror System

Underground

Features in

KAGRA collaboration

the University of Tokyo, ICRR **High Energy Accelerator Research** Organization (KEK) National Astronomical Observatory of Japan (NAOJ) the University of Tokyo, Science the University of Tokyo, Frontier Science the University of Tokyo, Engineering Osaka Citv Universitv Kyoto University University of Electro-Communications the University of Tokyo, ERI Hosei University, Science & Engineering Hosei University, Engineering National Institute of Advanced Industrial Science and Technology National Institute of Information and Communications Technology Osaka University **Kyoto University** Kyushu University Ochanomizuu University National Institute for Fusion Science Nihon University, ARISH Niigata University, Science Niigata University, Engineering Nagaoka University of Technology Nihon University, CIT Hirosaki Universitv Tohoku University

Rikkvo Universitv Hiroshima University University of the Ryukyus Waseda University, ASE Waseda University, Education Teikvo University University of Toyama, Science University of Toyama, Engineering University of Toyama, ITC Yokohama City University Fukuoka University Aichi University of Technology Japan Student Service Organization Institute for Molecular Science Kavli Institute for the Physics and Mathematics of the Universe National Defense Academy of Japan Max-Planck-Institut California Inst. Technology University of Western Australia Louisiana State University **Beijing Normal University** Inter University Center for Astronomy & **Astrophysics** Moscow University LATMOS, CNRS University of Science and Technology of China **Tsinghua University** Industrial Technology Research Institute

80 international institutions

University of Maryland **Columbia University** University of the West of Scotland University of Sannio Rome University Shanghai Normal University National Tsing Hua University Korea University Inje University Seoul National University Myongii National University Korea Atomic Energy Research Institute Hanyang University **Pusan National University** Korea Institute of Science and **Technology Information** National Institute for Mathematical Sciences Kyungpook National University Kunsan National University Korea Institute for Advanced Study Sogang University Chinese Academy of Sciences The Pennsylvania State University Montana State University Indian Institute of Science Education and Research Thiruvananthapuram National Institute for Subatomic Physics University of Wisconsin-Milwaukee Warsaw U of Technology

Optical Configuration of KAGRA

Dual Recycled Fabry-Perot Michelson Interferometer

Typical 2nd generation GW detector configuration

Mode cleaner

Power recycling gain: 11 • 26 m • Signal band gain: 15 Finesse: 500 DC readout ITM PRM **Input Bench** ETM ITM BS 400 kW 7 825 W 80 W Laser Wavelength: 1064 nm **Power: 180 W** SEM • NPRO + Fiber amp. + laser module **Output mode cleaner**

ETM

Interferometer

with detuning

Finesse: 1530

Resonant sideband extraction

Goal Sensitivity of KAGRA h ~ factor x 10⁻²⁴ [/vHz]

We expect GW signal of NS-NS binary Coalescence from 280Mpc distance. Event rate is proportional to volume (cubic sensitivity) \rightarrow about 10 event/yr.

Advanced Optical Technologies

Ultra-high Precision Core-optics

Specifications of KAGRA core-optics

Arm Cavity Finesse	1530
Optical Loss for End Mirror	< 50ppm
Reflectivity of Input Mirror	99.6%
Reflectivity of Power-Recycling Mirror	90%

Measured by ZYGO EPO

Measurement result of surface polish of φ200mm test sapphire substrate

E. Hirose et al., Phys. Rev. D 89, 062003 (2014)

optical power loss on four main mirrors is critical to realize

- high power-recycling gain
- small scattered light noise

Ultra-high quality mirror polishing and reflective/antireflective coating are required.

Power spectrum density of surface roughness

Cryogenic Sapphire Mirror and Suspension

(1) Thermal noise Reduction

$$\sqrt{x(\omega)^2} \propto \sqrt{T \phi}$$

Cryogenic mirror is most straightforward method to reduce thermal noises.

Moreover

 $\phi = 5 imes 10^{-9}$ (bulk) $\phi = 1 imes 10^{-7}$ (fiber)

Typical Φ of sapphire at room temperature is ~10⁻⁶

Sapphire substrate

(2) Thermal Lensing

	Fused Silica (300K)	Fused Silica (20K)	Sapphire (300K)	Sapphire (20K)
α [ppm/cm]	2 - 20	2 - 20?	40 -140	20 - 90?
к [W/m∙K]	1.4	0.15	46	4.3 x 10 ³
dn/dT [K ⁻¹]	1.4 x 10 ⁻⁵	1.4 x 10 ⁻⁵	1.3 x 10 ⁻⁵	< 9 x 10 ⁻⁸
α (dn/dT)/κ x 10 ⁻¹¹	2 - 20	20 - 200	1.1	< 0.4 - 2 x 10 ⁻⁴

(3) Vibration-Free cryocooler system to realize cryogenic sapphire mirror

- nm vibration at cold stage
- comparable vibration level of whole system with Kamioka seismic vibration

Demonstration Experiment in <u>Cryogenic Interferometer</u> <u>Prototype (CLIO)</u>

Reduction of sapphire mirror thermal noise at room temperature by cooling to 17K was demonstrated.

T. Uchiyama et al., PRL 108, 141101 (2011)

Present Status of KAGRA

Tunnel excavation was done at Mar. 2014

Cryostat Installation

Vacuum Tubes Installation

Clean Booth Construction

Mode-cleaner Mirror Installation

Input-optics Installation

Schedule of KAGRA

2nd Generation GW Observation Network

We will start new gravitational wave astronomy soon.