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Gravitational Wave
and Its Detection
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Space Time

Language to tell “Universe”

General Relativity
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4-dimensional curved space-time theory

= Gravity Theory :
A. Einstein

Newtonian Gravity (1687) General Relativity

Universal Gravitation (Dynamics) Geometry of Space-Time



' e There are many proof of GR.
G raVItan O n a I Wave But it is not still completed.

One of symbolic phenomena in General Relativity

Electromagnetic interaction Gravity interaction
Coulomb’s force < Universal gravitation
Electromagnetic wave <  Gravitational wave

EM wave GW

But there are also different natures between both interactions. For an example, the system
with + and — charges in EM system is neutral, and it radiates EM wave with same frequency as
charge rotation (dipole). But the system with masses can not be neutral, and it radiates

GW with twice frequency of the rotation (quadrupole).




Gravitational Wave:

Propagation of Space-time distortion

Motion of test particles by GW tidal force

It induces gravity tidal force
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But this effect is really small.

GW detection is figured such as

WAL,

“Like a search of Hydrogen atom

between the Earth and the Sun.”




Principle of GW Measurement by Michelson Interferometer

When length difference between both interferometer arms are occurred by GW,
leakage of light will be dropped onto CCD.
GW causes space

-time distortion
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Sensitivity Limitations of Interferometric GW Detector
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A Practical Configuration:
Power Recycled Fabry-Perot Michelson Interferometer

Fabry-Perot Cavity

/r ~ * Optical Path Extension
® [ncrease Laser Power

Suspended Silica Mirror | } to reduce Photon-Shot Noise

e Seismic vibration

attenuation

e Thermal noise reduction Y
Laser
(Nd: YAG, 1064nm) Beam Splitter

>
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Power Recycling Mirror

* Re-use laser power ‘5' Photo Detector

These are 1%t generation Technologies.



from Lisa Barsotti (LIGO-MIT)

Initial LIGO Sensitivity improvement
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Large-scale Cryogenic
Gravitational wave Telescope

-KAGRA-

2"d Generation Interferometric GW Detector



Sensitivity Improvement Plan in 2"9 Generation GW Detector
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A theme in 2" generation GW detectors is how we can reduce “thermal noises”:
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Sensitivity Improvement Plan in 2"9 Generation GW Detector
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The sensitivity of 2"d generation GW detectors will be limited by “quantum noises”.
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KAGRA Location
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Optical Configuration of KAGRA

Dual Recycled Fabry-Perot

Michelson Interferometer

Typical 2" generation GW detector
configuration

Mode cleaner
® 26 m
® Finesse: 500

ETM

Interferometer

® Resonant sideband extraction
with detuning
® Finesse: 1530
® Power recycling gain: 11
® Signal band gain: 15
® DC readout
ITM

Bs IT™  400kw ETM

Input Bergch P§M
—
7 SOW 825W

Laser

® Wavelength: 1064 nm
® Power: 180 W

h

® NPRO + Fiber amp. + laser module HkaENl
Output mode cleaner is



Goal Sensitivity of KAGRA

h ~ factor x 1024 [/VHz]
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We expect GW signal of NS-NS binary Coalescence from 280Mpc distance.
Event rate is proportional to volume (cubic sensitivity) - about 10 event/yr.
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Advanced Optical
Technologies



Ultra-high Precision Core-optics

Specifications of KAGRA core-optics

Arm Cavity Finesse

1530

%

optical power loss on four
main mirrors is critical
to realize
e high power-recycling gain
e small scattered light noise

~

Optical Loss for End Mirror < 50ppm
Reflectivity of Input Mirror 99.6%
Reflectivity of Power-Recycling Mirror 90%

Measurement result of surface polish of
$200mm test sapphire substrate

Measured by ZYGO EPO

1.298 nm

RMS waviness
in $180mm
is 0.48nm

-2.312 nm

E. Hirose et al., Phys. Rev. D 89, 062003 (2014)

Ultra-high quality mirror polishing
and reflective/antireflective
coating are required.

Power spectrum density of surface roughness

)
Power Spectral Density [nm”™ mm]
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Cryogenic Sapphire Mirror and Suspension

Cryogenic mirror is most

(1) Thermal noise .
\/Qj ((,‘j)2 X A /T ¢ straightforward method to

Reduction reduce thermal noises.

Moreover Sapphire q§ — 5 X 10_9 (bulk)
@ 20K o =1 X 10~ 7 (fiben
Typical @ of sapphire at room
temperature is ~10° ~§  Blade ANSYS
PSS R15.0

Academic

Main beam of

ey ¥ L KAGRA
o i o 0.000 0100(m) . 20
Sapphire substrate —




(2) Thermal Lensing

Fused Silica Fused Silica Sapphire Sapphire (20K)
(300K) (20K) (300K)

a [ppm/cm] 2-20 2-20? 40 -140 20 - 90?
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(3) Vibration-Free cryocooler
system to realize cryogenic
sapphire mirror

e nm vibration at cold stage

e comparable vibration level of
whole system with Kamioka
seismic vibration
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1) —— CryoSens
Demonstration Experiment § IO
_ 10" {(4) =+-=+- RoomMT
in Cryogenic Interferometer = HE) e LN
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Present Status of KAGRA



Tunnel excavation was
done at Mar. 2014




Vacuum Tubes Installation

ubes:
@800mm x12m x 478

Clean Booth Mode-cleaner Input-optics
Installation

Construction Mirror Installation




Schedule of KAGRA

Calendar year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018
Project start H

Tunnel excavation

initial-KAGRA .
iIKAGRA ops. [
baseline-KAGRA Adv. Optics system and tests

Cryozenic system

Observation ‘

iIKAGRA bKAGRA Q\

basic operation \ / /
test ~ » i»
/
i \/ i )
® Michelson » ® Resonant sideband extractlon

® Room temperature ® Cryogenic Sapphire Mirror
® Simple seismic isolation system ® Advanced seismic isolation system .
® Low power Laser ® High power laser




2nd Generatlon GW Observation Network
GEO-HF (Hanover), 600m

-

.

.
,r

&

KAGRA (Kamioka), 3km
” ,
200Mpc

AP FUSLWA TLEOXMA . Ze@EWER - % - | AS7LZERNE

. Al .o . _ \ - ; . '
: : .- g - . &

- . —

: Taene « T Moc " Z0Mpe _ ) ZOOIDC
Our Galaxy Magellan - Andromeda Virgo Cluster  Hercules Cluster




We will start
new gravitational wave
astronomy soon.



