Large-scale Cryogenic Gravitational wave Telescope: KAGRA

Rencontres de Moriond 2015, Gravitation
Mar. 26. 2015
Takayuki TOMRU
High Energy Accelerator Research Organization
(KEK)

KAGRA: KAmioka GRAvitational wave detector

神楽 Traditional theatrical dance in Japanese Shinto religion

We selected this nickname from public offering.

2nd Generation GW Observation Network

Why do we need a GW telescope in Japan?

Sky Coverage

LIGO(H)+LIGO(L)+Virgo

• Coverage at 0.5 M.S.: 72%

• 3 detector duty factor: 51%

LIGO(H)+LIGO(L)+Virgo+ KAGRA

Max sensitivity (M.S.): +13%

• Coverage at 0.5 M.S.: 100%

• 4 detector duty factor: 82%

Observation by KAGRA is critical to realize all sky surveying in new GW astronomy.

KAGRA collaboration

80 international institutions

the University of Tokyo, ICRR
High Energy Accelerator Research
Organization (KEK)

National Astronomical Observatory of Japan (NAOJ)

the University of Tokyo, Science

the University of Tokyo, Frontier Science the University of Tokyo, Engineering

Osaka City University

Kyoto University

University of Electro-Communications

the University of Tokyo, ERI

Hosei University, Science & Engineering

Hosei University, Engineering

National Institute of Advanced Industrial

Science and Technology

National Institute of Information and

Communications Technology

Osaka University

Kyoto University

Kyushu University

Ochanomizuu University

National Institute for Fusion Science

Nihon University, ARISH

Niigata University, Science

Niigata University, Engineering

Nagaoka University of Technology

Nihon University, CIT

Hirosaki University

Tohoku University

Rikkyo University

Hiroshima University

University of the Ryukyus

Waseda University, ASE

Waseda University, Education

Teikyo University

University of Toyama, Science

University of Toyama, Engineering

University of Toyama, ITC

Yokohama City University

Fukuoka University

Aichi University of Technology

Japan Student Service Organization

Institute for Molecular Science

Kavli Institute for the Physics and

Mathematics of the Universe

National Defense Academy of Japan

Max-Planck-Institut

California Inst. Technology

University of Western Australia

Louisiana State University

Beijing Normal University

Inter University Center for Astronomy &

Astrophysics

Moscow University

LATMOS, CNRS

University of Science and Technology of

China

Tsinghua University

Industrial Technology Research Institute

University of Maryland Columbia University

University of the West of Scotland

University of Sannio

Rome University

Shanghai Normal University

National Tsing Hua University

Korea University

Inje University

Seoul National University

Myongii National University

Korea Atomic Energy Research Institute

Hanyang University

Pusan National University

Korea Institute of Science and

Technology Information

National Institute for Mathematical

Sciences

Kyungpook National University

Kunsan National University

Korea Institute for Advanced Study

Sogang University

Chinese Academy of Sciences

The Pennsylvania State University

Montana State University

Indian Institute of Science Education and

Research Thiruvananthapuram

National Institute for Subatomic Physics

University of Wisconsin-Milwaukee

Warsaw U of Technology

Goal Sensitivity of KAGRA

h ~ factor x 10⁻²⁴ [/VHz] for observation band

Search Range

NS-NS binary Coalescence \rightarrow 280 Mpc at best direction (~173Mpc in whole sky average)

→ about 10 event/yr

Distance

→ typically 100kpc - 1Mpc

Supernova

Optical Configuration of KAGRA

Dual Recycled Fabry-Perot Michelson Interferometer

Typical 2nd generation GW detector configuration

Mode cleaner

- 26 m
- Finesse: 500

Interferometer

- Resonant sideband extraction with detuning
- Power recycling gain: 11
- Signal band gain: 15
- DC readout

ITM

PRM

BS

ITM

400 kW

ETM

Laser

- Wavelength: 1064 nm
- Power: 180 W
- NPRO + Fiber amp. + laser module

Goal Sensitivity of KAGRA

h ~ factor x 10⁻²⁴ [/VHz] for observation band

Mt. Ikenoyama **KAGRA Location Mozumi Entrance** 500m Kamland 神岡宇宙素粒子研究施設 1000m underground KAGRA Super-Kamiokande 滑川市 3km 北陸本線 Toyama airport village Kamioka 0 **⊚**Tokyo 50min. 常願寺 by car **Shin-atotsu Entrance** 1000km

Avalanche

last week

Advantages in Kamioka Underground

2. Very stable temperature

Only 1°C temperature variation for a year.

-> Very stable device conditions are realized.

3. Frame-Free Suspension

Seismic Attenuation System (SAS)

Developed in NAOJ

Pre-isolator

Filter chain

Payload

Cryogenic Sapphire Mirror and Suspension

Thermal noise amplitude

$$\sqrt{x(\omega)^2} \propto \sqrt{\frac{T}{Q}}$$

Cryogenic mirror is most straightforward method to reduce thermal noises.

Moreover

$$Q = 2 \times 10^8$$

@ 20K

Sapphire Mirror:
$$Q=2\times 10^8$$
 Sapphire Suspension: $Q=1\times 10^7$

Typical Q of sapphire at room temperature is ~10⁶

Sapphire substrate

Sapphire fiber w/ nail-head

Practical Sapphire Mirror Suspension with High Q

- Hydro-Catalysis Bonding (HCB)
 - Kind of chemical bond
 - Strong bonding
 - Thin layer
- Indium Bonding (IB)
 - Welding
 - removable
 - Thin layer

Removable sapphire fiber connection is technically important when we meet the fiber trouble.

Thermal Noise Estimation for this Practical Suspension

This suspension technique satisfies KAGRA requirement of thermal noises.

These studies are strongly supported by ELiTES program which is collaborative framework between Europe and Japan.

Cryogenic Payload

Under developing in KEK and ICRR

Upper intermediate mass (IM) w/ moving mass

Bottom IM w/ sapphire blades

Sapphire suspension fibers

Sapphire Mirror

Recoil Mass

IM recoil mass and heat link are not shown.

Demonstration of Mirror Thermal Noise Reduction in <u>Cryogenic</u> Interferometer Prototype (CLIO)

Reduction of sapphire mirror thermal noise at room temperature by cooling to 17K was demonstrated.

T. Uchiyama et al., PRL 108, 141101 (2011)

Present Status

Tunnel excavation was done at Mar. 2014

7km tunnel in total

Cryostat Installation Aug. 14, 2014

<- First device installation

Cryostat Assembly

Assemblies of X-end, Y-end, Y-front cryostats has been done.
X-front cryostat is under assembly.

Vacuum Tubes and Tanks Installation

Most of vacuum tubes and tanks has been installed, and will be completed within this month.

We also confirmed no vacuum leakage; $< 1x10^{-12}$ [Pa m³/sec]

Issue: Water!

Vibration Measurement Results by Seismometer

Seismic vibration at X-end cryostat is expected level, comparable with CLIO site. In front of water pit where is about 10m from the cryostat location, we found excess over 10Hz.

Clean Booths are under constructing

Input optics is under installation

Mode cleaner mirror suspensions have been installed.

Schedule of KAGRA

- Michelson interferometer
- Room temperature
- Simple seismic isolation system

- Resonant sideband extraction
- Cryogenic Sapphire Mirror
- Advanced seismic isolation system

Summary

- KAGRA is a new 2nd generation GW telescope under construction in Japan.
- KAGRA uses challenging technologies such like cryogenic mirror and underground site. These technologies will be advanced in 3rd generation GW telescope; Einstein Telescope.
- Tunnel excavation was done at Mar. 2014, and we installed large devices such like cryostats and vacuum chambers soon.
- Installation of major devices will be completed in 2015, and we will have iKAGRA basic test operation after then.
- Baseline KAGRA including cryogenic mirrors will be ready at the end of 2017.