KAGRA Actuator Noise
Modeling Report

Yuta Michimura

March 30, 2015

1 Introduction

This report is to summarize the results of actuator noise modeling for the KA-
GRA suspensions. The modeling was done by using MATLAB Simulink based
NoiseBudget script made by Chris Wipf [1].

The main script and the model for the actuator noise modeling are as follows:

e https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT /trunk/kagranoisebudget/
Suspensions/run_SAS_NB.m

e https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT /trunk /kagranoisebudget /
Suspensions/SAS.slx

You will also need £indNbSVNroot.m, myzpk.m, plotdobe.m, and plotspectrum.m
in the same directroy to run the script.

The main purpose of this modeling is to check if the actuator noise meet the
displacement noise requirement set by MIF group, and to check if the feedback
signals to the actuators does not saturate DACs. Small actuation efficiency
gives less displacement noise, but it requires more feedback voltage.

Although this script works similarly for all suspensions, here I plot the results
only for BS (Type-B suspension), since the requirment on the displacement noise
is the most stringent other than ITM/ETMs. Actuator design for ITM/ETMs
is not fixed yet at this point.

2 Model

The Simulink model is shown together with the transfer functions and noises
used for the simulation.

2.1 Simulink model

The actuator noise Simulink model is shown in Fig. 1. We had to use some tricks
to simulate out-of-loop stability and feedback signal with Simulink NoiseBudget
blocks, NbNoiseCal and NbNoiseSink. FlexTf is used for suspension transfer
functions (light purple blocks) to use frequency response data (frd). Seismic
noise from vertical coupling is also included in the model.


https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT/trunk/kagranoisebudget/Suspensions/run_SAS_NB.m
https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT/trunk/kagranoisebudget/Suspensions/run_SAS_NB.m
https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT/trunk/kagranoisebudget/Suspensions/SAS.slx
https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT/trunk/kagranoisebudget/Suspensions/SAS.slx
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Actuator noise Simulink model.

Figure 1



2.2 Summary of KAGRA Suspensions

KAGRA suspension configurations are summarized graphically in Ref. [2]. For
longitudinal degrees of freedom, we basically have actuators for IP (inverted
pendulum), IM (intermediate mass), and TM (test mass).

Table 1 is the summary of the actuation for each suspension. Actuation
efficiency for a Type-B/Bp coil in N/A is from Ref. [2]. Actuation efficiency for
a Type-C TM coil are estimated from the measurement done by T. Saito [4]. The
measurement for MCe gives 3.1x10~7 m/V at DC, and this gives 5.0x1076 N/V
assuming IMC mirror mass to be 0.47 kg and the resonant frequency to be
0.93 Hz. The V-I conversion of coil driver for IMC mirrors is 20 mA/V (50 ),
so this means the actuation efficiency for a Type-C TM coil is 6.3 x 107° N/A.
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2.3 Suspension transfer functions

The suspension transfer functions from actuation on IM/TM (from respective
recoil masses) to TM displacement are shown below.
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Figure 2: BS suspension transfer functions.

The seismic noise supression ratio are shown below. 1% coupling of the
vertical motion to TM longitudinal displacement is also plotted.
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Figure 3: BS seismic noise supression ratio.



2.4 Seismic noise

The Kamioka seismic noise used in the modeling is plotted below.
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Figure 4: Kamioka seismic noise.

2.5 Coil drivers

We have two types of coil drivers, the high power one and the low power one.
They are basically the copies of LIGO-D0902747 and LIGO-D070481, respec-
tively, but has different dewhitening filters compared with LIGO ones. The high
power one and the low power one both have switchable three-stage dewhitening
filters with pole @ 1 Hz and zero @ 10 Hz (gain of 1 at DC). In the simulation,
all the dewhitening filters are turned on. The high power one is used for IM
coils and the low power one is used for TM coils.

V-I conversion factor for each coil driver when all the dewhitening filters are
turned off is plotted in Fig. 5. The resistance of the coil is not included here,
but it is included in the model (as 13 ). The resistances are 80 2 for the high
power one, and 7.8 x 10% Q for the low power one.


https://dcc.ligo.org/LIGO-D0902747
https://dcc.ligo.org/LIGO-D070481
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Figure 5: Inverse of V-I conversion factors for high power and low power coil
drivers.

Noises of coil drivers used in the model are plotted in Fig. 6, as input equiva-
lent noise to the V-I conversion stage. The numbers come from LIGO-T080014
and LIGO-T0900233.
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Figure 6: Input equivalent coil driver noise spectra.

2.6 DAC

DAC used for KAGRA is 16 bit and has the range of +£20 V. The DAC noise
is plotted in Fig. 7.


https://dcc.ligo.org/LIGO-T080014
https://dcc.ligo.org/LIGO-T0900233
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Figure 7: DAC noise.

3 Result for BS

Resulting plots for BS actuator noise modeling are shown.

3.1 Openloop transfer function

The openloop transfer funtion is shown below.
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Figure 8: Openloop transfer functions for the BS length servo.



3.2 Noise budget

The displacement noise budget and the actuator noise budget are shown below.
The lines labeled ”Requirement” show the BS displacement noise requirement
in Ref. [5], and the safety factor of 10 is included.

As you can see, the seismic noise and the actuator noise meet the requirement

above 10 Hz. The most contributing noise among the actuator noises is the noise
from TM coil driver.
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Figure 9: Displacment noise budget for BS.
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Figure 10: Actuator noise budget for BS.

3.3 Feedback signal saturation check

The spectra of feedback signals for IM and TM are shown in the figures below.

The blue lines labeled "DAC limit” shows the DAC range (216).
As you can see, RMS of the feed back signals do not exceed the DAC limit.

DAC output [cnt/rtHz]
e = =
o O

IMFB NoiseBudget

5 o o —DAC limit
g ; =—=Sum

10 ¢ HE ; - - -Actuator noise|;

10° | L Lo - - -Seismic noise |

(@)

0
frequency [Hz]

Figure 11: Spectra of feedback signals for the BSIM.
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Figure 12: Spectra of feedback signals for the BSTM.

Magnetic noise coupling

We also have to check the magnetic noise coupling for the actuation design
study. This is given elsewhere (in preparation by Ono-kun), but rough estimate
show that the magnetic noise is small enough.
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