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Clustering of Glitches

Classification of non-stationary large noises (broadband noise, known as

glitches, triggers) is useful for diagnosis of interferometer.

An un-supervised learning problem→ clustering.

Recognized by Mukherjee (2006) Class. Quant. Grav.:

I Input from kleine Welle: duration, central scale, SNR, and 15 highest

wavelet coefficients→ each glitch is a 18-dimensional vector.

I Dissimilarity matrix (probably) by Euclidean distance.

I Visualization by multidimensional scaling.

I Hierarchical clustering (UPGMA?).
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Clustering of Glitches (cont.)
Improvement by Mukherjee, et al. (2012) Phys. Rev. D:

I For the waveform, distances based on the length of the longest

common sub-sequence (local alignment by dynamic programming).

I Non-hierarchical clustering (k-means). The number of clusters, K , is

chosen such that the minimizer of intra/inter distances.

I Within a cluster, hierarchical clustering by central frequency,

amplitude, SNR, and quality score.

Our proposal:

I Clustering by power spectral density (PSD), which is a functional

data.

I Reformulate the problem in terms of Bayesian non-parametric

clustering (density estimate, Lo, 1984), which captures probabilistic

nature of the problem.
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Bayesian Paradigm: the beta-binomial model
Suppose s successes in Bernoulli(p) trial of the length n. The binomial

likelihood Binom(n, θ) with the beta prior Beta(θ, θ) yields posterior

Beta(s + θ, n − s + θ), because

π(p|s) ∝ P(s|p)πθ(p) ∝ ps(1 − p)n−spθ−1(1 − p)θ−1.

The beta prior is conjugate. A Bayesian estimate of the parameter is

p̂Bayes = E(p|s) =
n

n + 2θ
p̂MLE +

2θ
n + 2θ

1
2
, p̂MLE =

s
n
.

Thus θ, the hyperparameter, is a strength of the prior belief. The marginal

likelihood is

Pθ(s) =

∫ 1

0
P(s|p)πθ(p)dp =

 n

s

 (θ)s(θ)n−s

(2θ)n
.

Frequently used empirical estimate of the hyperparameter is the

maximizer of the marginal likelihood.
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Bayesian Clustering
Suppose sampling from a 2-components (cluster) mixture model. The

likelihood is

π(x1, ..., xn|p) =
n∏

i=1

{
pπ(xi |ci = 1) + (1 − p)π(xi |ci = 2)

}
and set the beta prior for p. In Bayesian clustering, our target is the joint

posterior of memberships P(c1, ..., cn|x1, ..., xn). For the Gibbs sampler,

we need P(ci |c−i , x1, ..., xn). By Bayes’ rule,

P(ci |c−i , x1, ..., xn) ∝ π(xi |c1, ..., cn, x−i)P(ci |c−i , x−i),

where π(xi |c, x−i) = π(xi |ci) and P(ci |c−i , x−i) = P(ci |c−i). Moreover,

noting exchangeability in sampling, we have

P(ci = 1||{j : cj,i = 1}| = s) =
Pn(s + 1)

Pn−1(s)

s + 1
n

=
θ + s

2θ + n − 1
.
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Bayesian Non-parametric Clustering

Extension to k -components is straightforward, the Dirichlet-multinomial

model, where p is sampled from the k -dimensional Dirichlet distribution.

But we have interest in the number of clusters.

Sampling from an “infinite-dimensional” Dirichlet distribution is possible

by replacing the Dirichlet distribution by the Dirichlet process (random

measure). This is non-parametric, since we do not use a fixed prior. The

Dirichlet process is a conjugate prior.

Definition (Ferguson, 1973)

Let µ be a finite measure on (X,B). A random measure D on X is called

a Dirichlet process if for every finite measureable partition {B1, ...,Bk } of

X, (D(B1), ...,D(Bk )) ∼ Dirichlet(µ(B1), ..., µ(Bk )).
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Bayesian Non-parametric Clustering (cont.)

I For the Dirichlet process, P(ci |c−i), which is needed in the Gibbs

sampler, is given by the Chinese restaurant process (CRP):

I Create a new cluster with probability
θ

θ + n − 1
;

I Member of the i-th cluster with probability
ni

θ + n − 1
.

I We set π(xi |ci) ∼ MVN(µi , σ), where µi are sampled by the

Metropolis-Hastings algorithm.

I Empirical estimate of θ are chosen as the maximizer of the marginal

likelihood with the MCMC estimate

πθ(x) =
∑

c

π(x|c)Pθ(c)=̂
1
M

M∑
i=1

π(x|c(i)), c(i) ∼ CRP(θ).
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Preprocessing

26,139 records by TAMA300

PSD→ B-spline regression coefficients (10 basis)→ PCA (94.8% variance

explained by only the 2 PCs).
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Visualization

Glitches are projected onto PCs. This is a snapshot. A clustering is a realization

of a random event, in contrast to the k-means. Empirical estimate θ̂ =0.007.
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Number of Clusters and Memberships
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The number of clusters and memberships are random variables. The posterior

probability of membership is given for each cluster for each glitch.
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Summary

I Classification of broadband noises are useful for diagnosis of

interferometer.

I Regarding PSD of glitches as a functional data a non-parametric

Bayesian clustering was proposed.

I The method provides posterior distributions of the number of

clusters and memberships for each cluster for each glitch.

I The posterior probability gives magnitude of confidence of the

assignment. In fact, our result shows that irregular glitches

accumulate in some specific period and then the lock will be lost.
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