KAGRA cryogenic system installation

T. Suzuki KEK / ICRR

2015.02.09 ELITES 3rd Meeting

KAGRA Cryogenic Instruments External Appearance

Cryogenic instruments on both ends and fronts

KAGRA Cryogenic Instruments

KAGRA Cryogenic Instruments

Installation of Cryostats

- Fabrication was finished until 2013FY. Four cryostats were stored in Sunouchi warehouse.
- Transportation and installation on the target position
 - Cryostats must pass arm tunnels before installation of vacuum ducts.
 - Route: Sunouchi warehouse ->(public road, on trailer and truck)-> Shinatotsu entrance ->(tunnel, on the low-floor cart)-> target position.
 - Temporary installed to Y-end on 13th~19th Aug. 2014, to X-end on 15th~17th
 Oct. 2014 and to XY-front on Nov. 2014.
- Assembling and leak test
 - Set vertical shield
 - Set φ2400 upper flange with a metal gasket. This flange will not open after the construction of clean booth.
 - Leak test confirms this flange to satisfy the requirement of KAGRA vacuum specification.
- Alignment of cryostat
 - Initial alignment: positioned on the chalked lines on the floor. A vertical direction was adjusted by sims on 19th Aug. at Y-end.
 - Some inclination was found to the cryostat at Y-end on 8^{th~}11th Oct. Size of the inclination seemed a few mili-radians.
 - If it means an uneven subsidence of the floor, it may affect connections to other vacuum instruments.
 - Observation of the position will be continued.

Cross sectional view of KAGRA tunnel

Cryostat Vacuum Chamber

W2900 L3150 H3200 11700 kg

PN1 (上部錯版) BがPN7、P11 (サービスポート) 助外に対能 (カバー右り)

Wooden Box Package of Upper Flange

W2720 L2720 H1810 M=2330 kg

Wooden Box Package of Side Ports

W2480 L2480 H2230 M=3390 kg

Tomogram of experimental hall at Y-end (Mozumi end)

Semi-circular line: designed tunnel shape

If unevenness of tunnel wall makes narrow part on arm tunnels, it is impossible to carry cryostat through arm tunnel.

A trial transportations were carried out by mock-up gauge.

Projected parts were shaved by rock drill.

Trial transportation

Assembling a mock-up gauge on a low-floor cart

Transportation of cryostats to X and Y ends

Assembling and leak test of \$\phi 2400\$ upper flange

- Construct a simple clean booth around a cryostat.
- Set blower to supply filtered air.
- Put a metal gasket to the upper flange and fasten the flange.
- Set side port flanges.

< Leak test >

KAGRA requirement < 1x10⁻¹⁰ Pa*m³/sec

Detector background 1x10⁻¹² Pa*m³/sec

No excess leak found above the background.

Surveying and alignment of the cryostats

(Jan., 2015, X, Y-ends)

T.Kume

Height and Horizontal level survey by using a level

T.Kume

Height (Altitude) reference(s)

T.Kume

- Absolute height (Altitude) of the pins had been surveyed by Kajima.
- Relative height between the pin and the pole had been surveyed.

Absolute heights (Altitudes) of the sticker marks can be obtained.

Tilt and position survey by using a theodolite

Surveying direction Surveying direction

Reference mark/line on floor

References and target markers for surveying by using a theodolite

T.Kume

Marker line drawn on floor by MESCO, installer

Marker pin knocked on floor by MESCO

Marker line scratched on the cryostat by Toshiba, manufacturer

Summary: Errors after alignment [mm]

(X, Y-end, Jan. 23, 2015)

T.Kume

	X-end	Y-end
Requirements	Sub-mm (< 1 mm, < 1 mrad)	
Level	< 1 mrad	< 1 mrad
Height	+2~3 mm	+5~6 mm
Shift	Zero?	Zero?
Tilt	< 1 mrad	<1 mrad?
Rotation	~1 mrad-CW	<1 mrad?
Other(s)	-	5~6 mm of torsion?
Judge	So-so, Rotation and Height alignment	Further investigation

Installation of duct shields, cryocoole units and cryo-payload

- Those instruments can be transported through arm tunnel after installing $\phi 800$ ducts.
- Fabrication of duct shields and cryocooler units.
 - Six of 8 of duct shields will be finished until March 2015.
 - Another two will be fabricated in 2015FY.
 - Fabrication of 4K cooler units were finished. (16 units)
 - Fabrication of 80K cooler units will finish on March 2015. (8 units)

Installation of cryogenic instruments for X-front and Y-front are going.

For cryo-payload, details of installation plan has not been fixed.

Summary

Installation

- Two cryostats installed to X-end and Y-end.
- Another two will be installed to X-front and Y-front in Feb.
 and Mar. 2015. Assembling will follow the installation.
- No leak was found for the cryostat in X-end.
- Installation of duct shields and cryocooler units are going.

Surveying

- Some position errors were found from the local standard for cryostats on X-end and Y-end.
- Surveying will be continued.

Toshikazu SUZUKI Chief, mine worker KEK, Prof.

Takayuki TOMARU Cryo-Payload KEK, Assoc. Prof.

Shinichi TERASHIMA Yusuke SAKAKIBARA Machinina KEK, Technical Staff

Cryostat, Scattering ICRR, Grad. Student

Dan CHEN Crvo-Payload, Q ICRR, Grad. Student

Nobuhiro KIMURA Cryostat sub-chief KEK, Assoc. Prof.

Tatsuya KUME Surveying, Alignment KEK, Assoc. Prof.

Iwao MURAKAMI Welding, Assembly KEK, Technical Staff

Hiroki TANAKA Cryo-Payload, Q ICRR, Grad. Student

Takahiro MIYAMOTO Cryo-Payload ICRR, Grad. Student

Kazuhiro YAMAMOTO Cryo-Payload sub-chief ICRR, Assist. Prof.

Rahul KUMAR Simulation, Payload KEK, PD

Ayako HAGIWARA CAD KEK, Technical Staff

Suguru TAKADA Cryogenics NIFS, Assist. Prof.

Tunnel excavation NATM

Preparation of blasting

Shotcrete (spray gunite)

Mucking

Rock-bolt

Step (floor height difference) along the cut line on floor (Y-end, Jan. 23, 2015) T.Kume

Example for the floor, on which the cryostat had been set at the Y-end, there can be observed 2~3 mm of step. The center is higher than the peripheral.