

The Input Optics for iKAGRA

Masayuki Nakano

- Background
- Overview of iKAGRA input optics
- Summary of PSL test in ICRR
- IOO Installation in the KAGRA tunnel
- Plans

Background

- Overview of iKAGRA input optics
- Summary of PSL test in ICRR
- IOO Installation in the KAGRA tunnel

• Plans

Background

We are developing the input optics for **iKAGRA**. iKAGRA specifications are below.

<u>Configuration</u>

✓ 3 km Fabry Perot Michelson Interferometer

Laser Power

√2W

<u>Purpose</u>

✓ To gain experience in operating a large interferometer

Objectives of Input Optics

- Provide a laser beam stable enough for locking the Fabry-Perot Michelson Interferometer stably.
 - √ Frequency stability
 - ✓ Reduction of the beam jitter
 - √ Mode matching

- Background
- Overview of iKAGRA input optics
- Summary of PSL test in ICRR
- IOO Installation in the KAGRA tunnel
- Plans

Overview of iKAGRA input optics

In-air optics (In a clean room)

✓ A Laser Source

✓ EOMs for IMC and MIF control

- ✓ Steering mirrors (SMs) for align the beam
- \checkmark The frequency stabilization system with FRC
- ✓ IMC mode matching lenses

In-vacuum optics

- √ 53 m long Input Mode Cleaner (IMC)
- ✓ A vacuum compatible high power faraday isolator
- ✓ An Input Mode Matching Telescope

Pre-Stabilized Laser (PSL)

- Laser Source
 - A monolithic Nd:YAG crystal NPRO (Non-Planar Ring Oscillator) laser.
 - \checkmark The power is 2 W
- Pre-mode cleaner (PMC)
 - ✓ The cavity length will be controlled with a PZT on the end mirror by Pound-Driver Hall signal.
 - √40 cm long triangular cavity.

Fig.2 Pre-Stabilized Laser

Pre-Stabilized Laser (PSL)

- Electro-optic Modulators (EOMs)
 - ✓ Providing the phase modulations for each cavity length control
 - EOM1 : For PMC
 - EOM2 : For FRC and IMC
 - EOM3 : For main interferometer
 - Broadband EOM : For frequency stabilization
- Fiber Ring Cavity (FRC)

✓ Used for frequency stabilization as a reference cavity.

Fig.2 Pre-Stabilized Laser

IMC, IFI, IMMT

- Input Mode Cleaner (IMC)
 - A triangular cavity with suspended mirrors.
 - Round trip length is 53 m, Finesse is 500, FSR is 5.625 MHz
 - Use the Wave Front Sensing technique for alignment control
- Input Faraday Isolator (IFI)
 Vacuum compatible high isolation ratio.
 We don't have to suspend it in the sense of phase noise caused by back scattered light

✓ We ordered to the Florida University.

- Mode Matching Telescope
 - ✓We don't need any curved mirrors or lenses for mode matching for the FPMI.
 - ✓ We just use flat mirrors for the mode matching telescope.

- Background
- Overview of iKAGRA input optics
- Summary of PSL test in ICRR
- IOO Installation in the KAGRA tunnel
- Plans

Pre-Mode Cleaner

√ cavity length : 40 cm

 The cavity frequency following to the laser frequency by the PDH control. An actuator is a PZT attached on the end mirror.

√UGF:4.2kHz

- ✓ The lock itself is stable, but the dynamic range of the PZT is not large enough.
- ✓ We have to make it larger somehow (change PZT, temperature control, etc.)

Fiber Ring Cavity (FRC)

Ref. "All-single-mode fiber resonator", L.F. Stokes, et al., Opt. Lett. 7, 288 (1982).

FRC Control

√ cavity length : 5.3m

 The laser frequency follows the cavity frequency of FRC with the PDH control. The actuators are laser temperature, laser PZT, broadband EOM.

Open loop transfer function

√UGF:10kHz

- ✓ Up to now, the broadband EOM haven't been installed yet. UGF might become faster after installing
- ✓ The lock is not stable enough. (At most 2 hours).

Frequency Stabilization System(FSS) by FRC

- We tested the frequency stabilization system with FRC
- We used the PMC feedback signal as the frequency sensor.

 10^{4}

- Background
- Overview of iKAGRA input optics
- Summary of PSL test in ICRR
- IOO Installation in the KAGRA tunnel
- Plans

Laser room

- The Laser room is cleaned up so closely.
- We wear a clean suit in the laser room

PSL table

Written by Kataoka (Tokyo Tech)

PSL table

- The PMC is locked for 27 hours.
 - Unfortunately, the temperature stability in the room is not so good as our expectation. That means we have to increase the dynamic range of the control.

Faraday Isolator

The Faraday isolator is under assembling on the PSL table.

Input Mode Cleaner

- The suspensions are assembled in NAOJ.
- The VIS and IOO team starts the installing the suspensions into vacuum chambers.

- Background
- Overview of iKAGRA input optics
- Summary of PSL test in ICRR
- IOO Installation in the KAGRA tunnel
- Plans

Plans

- Finish the construction of the PSL table
 - Installations of EOMs, FRC, mode matching lenses and so on.
 - Initial alignment of the beam to the IMC.
 - Improvement of the PMC dynamic range
- Finish the assembling of IFI
- Finish the installation of IMC suspensions
- IMC locking.

PMC parameters

Shape	triangular
Spacer	Invar
Mirror Curvature	300 mm
Round-trip length	40 cm
FSR	768.75 MHz
Finesse	230(p)
Transmissivity	43%(p)
UGF	~4 kHz
PZT resonant frequency	9.3 kHz

FRC fabrication: Final design for iKAGRA

3rd Fiber Ring Cavity

Splicing Loss : 0.01 dB, $a \cong 0.0023$

Gooch & Housego SM Coupler (99.9 % : 0.1 %)

Reducing line-width 3times

Length: 5.8 m $f_{FSR} = 35 \text{ MHz}$ $\Delta v = 80 \text{ kHz}$ Finesse = 540 Contrast: 27 %

PDH signal

The Particle Number

Inside

Outside

Japan-Korea Workshop @ Toyama Univ.

dirty water inside the room

Frequency Stabilization

- The frequency noise stabilization servo will be a multiple loop system.
- Using the Fiber Ring Cavity as a reference cavity
 ✓ FRC is easy to use and the alignment is stable.
- This system will be tested at ICRR.

Frequency Stabilization Servo Topology