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S6 data (example)

* | analyzed LIGO S6 data
[-L1 LDAS C02 L2-959200000-128.gwf
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Time variation of amplitudes
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Amplitude distribution

ég
O-_ Df.‘i Amlzlnllislude 2_'5 :
OE 0.3 A]l‘]l:l*[?lude >3 ;
0 5.3 33 3

Aler[?lude

x10

x10

x10

~ 345 Hz

~370 Hz

~403 Hz



Amplitude distribution (logy)
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Backups



Non-Harmonic Analysis (NHA)

* NHA is a method to extract dominant frequency components
in given time-series with high resolution, developed by a
Toyama Univ. group which is led by Hirobayashi-san.

 The method itself is patent-protected and so not publicly
available (even to the other KAGRA collaborators), but there
are some papers which describe the outline of the method,
especially,

— “Noise reduction for periodic signals using high resolution frequency
analysis” Yoshizawa et al., EURASIP Journal on Audio, Speech, and
Music Processing 5, 2011
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2)
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Basic Algorithm

FFT the given time series x(n) and find the frequency which gives the
largest amplitude.

You somehow minimize the following cost function about A,f, and ¢,

F(A f,p)= ;NZf{X(n) — ACOS[Z%}Ic n+ gpj}

n=0 S

starting from A and f estimated at 1). This is just a least square fit
with a sinusoidal function.

Once the best-fit values of A,f, and ¢ are found, the waveform of
converged spectrum is subtracted from x(n).

Repeat the procedure 1 ~ 3 as many times as one would like.



Problems

According to Hirobayashi-san, you need some specific environments
such as MATLAB or GPGPU to execute their NHA code.

In order to do data analysis ourselves efficiently, it’s better to
develop our own simple version of the code instead of using their
real one.

So | tried to implement this method from the scratch. But when |
followed the paper faithfully, the solutions were found not to be
stable and soon diverge.

Instead of following the whole procedure written in the paper, | took
another way to meet the same purpose. I'll refer to the new way
(next slide) as “Iterative Least Square (ILS)” instead of NHA to avoid
confusion.



Difference from NHA's paper
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Test Example

To test the performance of the ILS code, | artificially generated a
signal time-series with some input parameters and tried to
reconstruct them with ILS.

The time-series is composed of four different signals, each of
which has a constant amplitude and frequency.

The sampling rate is 512 Hz, and the duration is set to 1 s.

Amplitude Frequency [Hz] Initial phase [rad]

2.0 66.7 -0.15
1.2 109.0 0.46
1.0 40.4 2.40

0.6 21.3 0.10
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While frequencies were well reconstructed, some of the amplitudes were

not, which are caused by signal-signal interference.

What is already clear: when there are multiple signals within the same
duration, the minimum of the cost function does not always correspond
to the true amplitude value, and the solution shift a little bit.




Result (resolution)
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