

Advanced Virgo telescopes design and realization

Matteo Barsuglia (APC) On behalf of Virgo Collabration

Outline

- Introduction: advanced Virgo
 - Advanced Virgo optical scheme
 - Telescopes: global view, goals and challenges
- Input (injection system): from the conceptual design to pre-commissioning
 - Optical design
 - Mechanics
 - Mechanical tests
 - Integration
- Dark fringe telescope overview
- End transmission (BRT+Gouy phase) telescope overview

Introduction

Advanced Virgo optical scheme

- Dual recycled Fabry-Perot Michelson
- Bi-concave arm-cavities
- Marginally stable recycling cavities
- Compensation plates
- Pick-off plate for ITF control

Advanced Virgo main Optical parameters				
Light Power				
arm cavity power	$650\mathrm{kW}$	power on BS	$4.9\mathrm{kW}$	
Arm cavity geometry				
cavity length L	$2999.8\mathrm{m}$			
IM R_C	$1420\mathrm{m}$	EM R_C	1683 m	
Beam size on IM w	$48.7\mathrm{mm}$	Beam size on EM \boldsymbol{w}	58.0 mm	
waist size w_0	$9.69\mathrm{mm}$	waist position z	1363 m	
Arm cavity finesse				
finesse	443	round-trip losses	$75\mathrm{ppm}$	
transmission IM T	1.4%	transmission EM ${\cal T}$	1 ppm	
Power recycling				
transmission PRM T	5%	recycling gain	37.5	
PRC length	$11.952\mathrm{m}$	Beam size on PRM	49.1 (TBC) mm	
Signal recycling				
transmission SRM T	20%	finesse	26	
SRC length	$11.952\mathrm{m}$	SRM tuning	0.35 rad	
Mirrors				
IM diameter	$35\mathrm{cm}$	EM diameter	$35\mathrm{cm}$	
IM thickness	20 cm	EM thickness	20 cm	

Telescopes: goals and challenges

dark fringe (Output)

Parameters	Requirements
Mode matching on the OMC cavities	$\geq 99\%$
Magnification	186
Dimensions	$\leq 800 \text{mmx} 250 \text{mm}$
Noise coming from spurious light	\leq AdV sensitivity/10

	Parameter	Requirement
niection	Mode matching (on the ITF)	$\geq 99\%$
	Noise coming from diffused and back-reflected light	\leq AdV sensitivity/10
(input)	Magnification	19
	Telescope dimensions	$< 800~\mathrm{mm} \ge 350~\mathrm{mm}$

Suspended and under vacuum (remote controlled)

Advanced Virgo benches

Injecion bench (input) telescope

Injection system

Injection telescope

Parameter	Requirement
Mode matching (on the ITF)	$\geq 99\%$
Noise coming from diffused and back-reflected light	\leq AdV sensitivity/10
Magnification	19
Telescope dimensions	$< 800~\mathrm{mm} \ge 350~\mathrm{mm}$

Alternative configuration (reflective) explored

Space problems

Optical design

- Space constraints
- Aberrations copupling efficiency
- Tolerancing vs mechanical costraints
- Diffused light

-4520 -4500 -4480 -4460 -4440 -4420 -4400 -4380 Distance between PR mirror and the meniscus lens (mm)

Optics purchase / follow-up

- Specification document for each optics (dimensions, surface quality, tolerances...)
- Ask offers to several suppliers (~ 5/6)
- Technical readiness review (technical summary) for the choice of the supplier
- Tracking control, delivery time (respected or not), surface quality (specification
- respected, impact on the schedule)
- Delivery, coating

Pre-alignment procedure test

INTENSITE PHASE Phase

Mechanical design/ integration with the bench

Telescope mechanics

Mechanical mounts tests

Resonances

	Meniscus Lens	Parabolic Mirror M1	Parabolic Mirror M2
Frequen cy f1 Q1	75 Hz 40	<mark>116 Hz</mark> 40	145 Hz 20
Frequen cy f2 Q2	172 Hz 20	252 Hz 40	232 Hz 30
Frequen cy f3 Q3	305 Hz 40	355 Hz 20	331 Hz 30

Diffused light projections

Suspended injection bench integration

Dark fringe telescope

Dark fringe telescope

2 alternative configurations explored (reflective / strong lens on SR)

End bench telescope

End benches telescope

End bench

Implementation inside the minitower

