FEA modelling of Cryogenic suspension system

Rahul Kumar ICRR 22 January 2014

Outline

- Sapphire blade springs development
- Modelling of Indium layer
- Estimation of Violin mode
- Ongoing and future work

Sapphire blade springs development

Suspension layout - 1

Suspension layout - 2

Breaking stress of sapphire blades

•Thermo-polish gives an average breaking stress of 466 MPa. Non polished blades have lower breaking stress of 250 MPa. For KAGRA thermo polished sapphire blade springs will be used.

Prototype designs

Blade Springs are required to lower the vertical (bounce) frequency which currently sits at 108 Hz.

Results

Design 3

Bending modes of the blades

The first and the second bending mode of the sapphire pendulum with blade springs is observed at 569 Hz and 767 Hz respectively.

1st bending mode – 569 Hz

2nd bending mode – 767 Hz

Modelling of Indium layer

Estimating mechanical loss of Indium using FEA

Thickness, micron

a factor of 10

Estimation of Violin modes

1st Violin mode frequency spread

Length difference of sapphire Fibre, mm

Ongoing-future work

- Blade spring design Target 12-14 Hz
- Mechanical loss and Thermal noise (TN) of the pendulum system (fibres, ears, test mass)
- Thermal noise contribution from blade springs
- Estimation of TN for the bond layers (Indium and HCB)